














































































































































































































































230 6 Applications of geometry in cryptography 

6.3.4 Theorem. Every perfect authentication system is of the form A(N) for some 

net N. 

Proof Let A be a perfect authentication system. We define a geometry N as 
follows: 

- the points of N are the keys of A; 
- the lines of N are the messages of A; 
- a line c and a point k are incident if and only if the message c is valid under 

the key k, this means if and only if there is a d that is mapped under k onto c. 

In order to prove that the geometry N is a net, we read the axioms of a net in 
terms of the underlying authentication system. The first property of a net is that 

through any two points there is at most one line. So we have to show that there is 

at most one message valid under two distinct keys. This condition follows from 
Lemma 6.3.2( c). 

Let (k, c) be a nonincident point-line pair. In other words, c is a message not 

valid under k. We have to show that there is exactly one message c' valid under 

k with the property that there is no common key for c and c'. 
Let d be the plaintext belonging to c. By Lemma 6.3.2( c) the messages that 

do not share a key with c are exactly the messages corresponding to d. Let d be 

mapped under k onto a message c'; then c' is the unique line through k that has 
no point in common with c. 

Therefore N is a net. o 

As corollary it follows ([GMS74], [BeR090D that in a perfect authentication sys­
tem A with K keys there are at most + 1 plaintexts. Equality holds if and 
only if A is constructed from a projective plane. To sum up, perfect authentica­

tion systems are geometric, and the best ones are constructed from projective 

planes! 

A corresponding theory was developed for authentication systems, in which the 
attacker may observe more than one message before inserting a message of his 

own (see [Fak79], [Mas86D. 
We consider the situation of the receiver verifying n messages with the same 

key. The attacker may send his message whenever he wants to, for instance before 
the first message or instead of the nth message. As in the above theorem one can 

show that the theoretical probability of success only depends on the number of 
keys. If K denotes the number of keys, then the probability p that one of n 
messages was falsified is 

p;:':K-1/(n+l). 
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For the proof see [Fiik79], [Wal9D] and [Ros93]. Authentication systems for 
which equality holds are called perfect n-fold. 

In this scenario one has to exclude that the same message is sent twice. Other­
wise, if the attacker has observed a message he can himself repeat the message 
later on, and the forgery would not be detected. 

Examples for n-fold authentication systems can be constructed using geome­
try. For this we need the normal rational curves considered in Section 2.2. 

6.3.5 Theorem. Let P be afinite projective space of dimension n + 1, let H be 

a hyperplane, and let P be a point outside H. Furthermore, let g, be a normal 

rational curve of H. An authentication system A is defined as follows: 
the plaintexts are the points in g" 

- the keys are the hyperplane not through P, 

- the messages are the points not equal to P. For d E g) and a key k one gets 

the corresponding message as intersection of the line Pd with the hyperplane k. 
Then A is a perfect n-fold authentication system. 

Proof Let q denote the order of P. First, we compute the numbers of plaintexts 
and keys. By definition, a normal rational curve has exactly q + I points and thus 

I g, I = q + 1 plaintexts. The number of keys is the number of hyperplanes not 
through P. Altogether there are qn + I + ... + q + 1 hyperplanes, of which 
qn + ... + q + 1 pass through P. Therefore, there are exactly qn + 1 keys in A. 

In order to prove that A is perfect n-fold we have to show that the probability 
of an attacker being able to forge one of the n messages equals 1/ q. 

We first analyse the case in which no message has been sent. For this we con­
sider an arbitrary plaintext, that is a point Q of the normal rational curve. Each 

point X on the line PQ different from P is a possible message corresponding to 
Q. We show that through each point X on the line PQ there is the same number 
qn of keys: By exercise 10, there are exactly qn hyperplanes through X that do 
not contain P, so there are exactly qn keys through X. Thus, the probability p 

that X is a valid message equals the number of keys through X divided by the 
number of all keys. In other words, 

qn I 
p=--=-. 

qn+! q 

Now we consider the case that already i messages PI,"" Pi (1 i n) have 
been sent. We have to face the possibility that the attacker knows these points. 
Therefore he knows that the actual key is one of the hyperplanes through Plo ... , 
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Pi not through P. Let OJ be the plaintext belonging to Pj (1 5,j 5, i). The points 
OJ are the intersections of the lines PPj with the hyperplane H. 
We claim: the subs pace U = (P b ... , P j) has dimension i-I, and for each point 

Q of 9) difforent from the points OJ, the line PQ does not intersect U. 
Since the points OJ lie on 9), we have that dim(Q1,' .. , Qi) = i-I. From this 

it follows that 

dim(P, Pt. ... , Pi) = dim(P, Qb ... , Qi) = i, 

thus dim(P1, ... ,Pi)=i-l. 
If Q is another point on 9), then dim(Q, Qb ... , Qi) = i. Therefore, the line 

PQ only intersects the subspace (P, Q). ... , Qi) in P. In particular, PQ does not 
intersect the subspace Ut;;;; (P, Q], ... , Q;). 

Using this claim we are able to prove that the probability of an attacker being 
able to generate a valid message for a plaintext Q equals 1 Iq: The attacker 
knows that the actual key is one of the hyperplanes containing the already ob­
served messages, i.e. the hyperplanes containing U, but not P. There are precisely 
qn - i + 1 hyperplanes fulfilling this condition. Let R be a point on the line PQ 

different from P. Because PQ does not intersect the subspace U, dim(U, R) = i 

holds. Furthermore, the number of hyperplanes containing this subspace, but not 
P, equals qn + i. Therefore, each message belonging to Q corresponds to exactly 
qn - i keys. Since 

n-i 1 
p=-q--=-

qn-i+1 q' 

the probability p of success is also in this case just 1 Iq. o 

Remark. In Theorem 6.3.5 it is essential to consider only points in general position 
as plaintexts, which means that any n + I points generate H. We examine the 

situation of an attacker having observed two messages PI and P2· Let QI and 
Q2 be the corresponding plaintexts. The attacker does not know the actual key, 

but he knows that this must be one of the hyperplanes through P I and P2· 

If another point Q* of the line Q I Qz were a possible plaintext, the attacker 
could choose the point p* := PQ* n PIPz as his message and could thus insert a 

new message without being detected. 
This means that although the attacker does not know the key he can generate a 

valid message! 
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6.4 Secret sharing schemes 

Cryptographic algorithms are often based on secret information. This is true for 
symmetric enciphering and authentication algorithms as well as for asymmetric 
algorithms. 

Therefore, the management of secret data is a fundamental task in applications 
of cryptology. One distinguishes different aspects: generation, distribution, stor­

age, and deletion of secret data. All these are different aspects of key manage­
ment. 

In this section we deal with the special problem of storing secret data. More 
precisely, we deal with the dilemma between the secrecy and availability of data. 

This problem is solved in an optimal way by secret sharing schemes ([Sha79], 
[Sim92b]). 

What is a secret sharing scheme? 

Technically speaking, secret sharing schemes are used to reconstruct secret data, 

when only certain parts of the secret data are available - the reconstruction is only 
possible for some previously defined situations, while it is impossible for all other 
situations. 

To clarify matters we start with an example, which will serve as prototype for 
all secret sharing schemes dealt with in this section. 

Example. We assume that the secret X is a string of m bits, e.g. a binary key of 

length m. We want to 'subdivide' X into 'partial secrets' ('shares') Xi such that 
X can be reconstructed from any two shares, while it should not be feasible to 
reconstruct the secret from only one share. 

To construct such a secret sharing scheme (a 'threshold 2-scheme') we use a 
projective plane P = G(2, q) of order q ~ 2m. We choose a line g. The secret is 

encoded as a point X on g. We randomly choose a line h * g through X and on 
it arbitrary points XI> X2, ... as shares (see Figure 6.7). 

Figure 6.7 A threshold 2-scheme 



234 6 Applications of geometry in cryptography 

To reconstruct the secret X from two shares Xi> X), i * j, the system computes 
the intersection of the line XiX) with g. If Xi and X) are two valid shares then 
the system obtains the point X. On the other hand, knowing only one share one 
cannot reconstruct the secret: Given a share Xi> any of the q + I points of the 
line g could be the secret. If an attacker only knows the line g and the point X;, 
any point * Xi on any line through Xi could be another share. Therefore, each 
point on g might be the secret equally likely, the probability of success for the 

attacker equals 1 /(q + 1). 
This means, if an attacker knows only one share there is no better strategy than 

just guessing the secret! 

We now give a precise definition of secret sharing schemes. For this we describe 

the fourphase life cycle of a secret sharing scheme. 

1. The definition phase. In this phase the service provider formulates his re­

quirements. He firstly has to define the 'access structure', that is to say which con­

stellations of users shall be able to reconstruct the secret. Secondly, he must limit 
the probability that an illegal group of users can reconstruct the secret. Observe 
that no system is secure to 100%. An attacker could, for instance, guess the secret. 
But interestingly enough, in geometric secret sharing schemes the probability of 

success for an attacker can be kept as small as one likes. 
The access structure is the set of all configurations of users allowed to recon­

struct the secret. In other words: the access structure specifies the sets of partici­
pants that may legally reconstruct the secret. The access structure might be rather 

complex (see below): one sometimes distinguishes between different groups of 
users and defines how many members of each group are needed for reconstructing 
the secret. The probability of deception is the second parameter that the service 

provider must specify. For this he specifies an upper bound for the probability that 
a illegal set of participants can reconstruct the secret. This is necessary because 
there is no 100% security; any system can be defrauded with some positive prob­

ability. The user specifies how far he will tolerate an illegal reconstruction of the 

secret in choosing a probability p for this event. (A typical value is p = 10-2°.) 

2. The mathematical phase. After having formulated the requirements it is the 

task of mathematicians to provide structures to realize them. 
For constructing secret sharing schemes (projective) geometry with the under­

lying algebra has proven to be of great value. We have already described an ex­
ample, subsequently we will present further constructions based on geometry for 
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different secret sharing schemes. For detailed description of the realizability of 
secret sharing schemes using geometric structures see [Ker92], [Sti95]. 

3. Generation of the secret. Now it is the task of the service provider to choose 
the secret X. Then the shares are calculated by a method provided by mathemat­
ics. Finally the shares are distributed to the users. 

It is crucial that the choice of the secret X - and thus of the shares - is com­

pletely under the responsibility of the service provider. It is independent of the 

formulated requirements and the chosen mathematical structure. 

4. The application phase. In this phase the secret X will be reconstructed from 
a legal constellation of shares. 

Remark. We distinguish two different application types of secret sharing schemes. 

If the application is of type 'access" the reconstructed value is compared to the 
stored secret X. If the two values coincide access is provided. Thus, in this case 
the verifying instance (e.g. a computer) knows the secret. 

There are also applications whose aim is to generate secrets. One example is 

the transport of a cryptographic key to a computer, where it is reconstructed. In 
this case the secret is not stored in the computer, but must be transported to the 
computer. Here we have a different problem: the computer must convince itself 
that the calculated value is not only an arbitrary value, but with high probability 

the correct secret X. For this purpose the so-called robust secret sharing schemes 
have been invented. A simple example of a robust scheme can be derived from our 
example. The computer requests not just two, but three shares and verifies 
whether all three pairs of points lie on the same line. (For details see [Sim90].) 

Depending on the different types of legally constellating the participants, different 
types of secret sharing scheme can be distinguished. We first define the most im­
portant classes of secret sharing schemes and then describe their constructions. 

(a) Threshold schemes. In a threshold I-scheme it is required that any t users 
can reconstruct the secret, but no constellation of t - 1 or fewer users. For in­

stance, in a threshold 2-scheme any two users can reconstruct the secret, but a 
single user has no chance to do this. In a threshold I-scheme, the number t is also 

called the quorum. 
(b) Compartment schemes. The participants are partitioned into different 
'compartments', which, in principle, have equal rights: In each compartment a 
certain quorum of users is required to let this compartment take part in the re­
construction of the secret. Moreover, a certain number of compartments must 
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participate in the reconstruction. In other words. each compartment is a threshold 
scheme, and on the set of all compartments we have yet another threshold scheme. 

This could be used for signing contracts in a company. There are two com­
partments, e.g. technical and commercial departments, and at least one signature is 

required from each compartment. 
(c) Multilevel schemes. Again, the participants are partitioned into different 
groups, but these groups are ordered hierarchically. Each member of 'higher' or­

der can replace a member of 'lower' order. 
A special case is a multilevel secret sharing (2. s )-scheme that realizes the 

following access structure: 
There are two groups if, and ::r of participants. The secret shall only be recon­

structable in the following cases: 
any s participants of if, can reconstruct the secret, 

- any 2 participants of ::r can reconstruct the secret, 
- any s - 1 participants of if, together with any participant of ::r can reconstruct 

the secret. 
In such a secret sharing scheme two participants of the top level ::r have the 

same rights as s participants of the lower level; moreover, any user of the higher 

level can act as a member of the lower level. 

Constructing secret sharing schemes 

In the following we will present geometric constructions for the three most im­
portant classes of secret sharing schemes, namely threshold schemes, compart­

ment schemes, and multilevel schemes. 

1. Threshold schemes. To construct a threshold t-scheme one can proceed as 
follows: We fix a line g in P = PG(t, q). The points of g are the potential se­
crets. If the service provider chooses a point X on g as actual secret, there is a 

method which enables him to 
- choose a hyperplane H (that is a (t - 1 )-dimensional subspace) through X 

that does not contain g, and 
- choose in H a set ::r of points in general position containing X. For example, 
one can choose ::r as part of a normal rational curve in H. The shares are points 

of ::r different from X. 
In the application phase certain partial secrets are sent to the system. The sys­

tem computes the subspace through these shares (points) and intersects it with g. 
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If at least t legal shares are sent to the system, the constructed subspace is H, 
because the points are in general position. In this case the correct secret H (\ g = 

X will be obtained. This means that any t participants can reconstruct the secret. 

The converse is valid as well: 

6.4.1 Theorem. If an attacker knows at most t - 1 legal shares, his chance of 
cheating successfully is only l/(q + 1). 

Proof An attacker deceives successfully if he obtains the correct secret without 
knowing t shares. It is clear that an attacker has an apriori probability of success 
of 1/ (q + 1), since he may choose one of the q + 1 points of g at random. 

The theorem claims that his chance does not increase if he knows as many as 
t - 1 legal shares. 

Let ::r' be a set of at most t - 1 shares. Then ::r generates a subspace U with 
dim{U) .$ t - 1. Moreover, U does not intersect g, since :r u {X} is a set of in­
dependent points. An attacker knowing only g and ::r' only knows that any fur­
ther share is a point outside U not on g. 

We show that each point Xo on g has the same probability of being the se­
cret: for any choice of Xo on g, the subspace W = <Xo, U) contains the same 
number of shares. Since g has exactly q + 1 points, the attacker's probability of 
success is l/(q + 1). 0 

Definition. A secret sharing scheme is called perfect if the probability of guess­
ing the secret has the same value for all nonlegal constellations of participants. 

This means, perfect secret sharing schemes have the property that an attacker 
knowing only a small number of shares (not enough shares) has the same infor­
mation about the secret as he would have with no share at all. In other words: per­
fect secret sharing schemes provide an insuperable security against insider attacks: 
an insider knowing at least one share only has the same extremely small probabil­

ity of success as an outsider knowing nothing about the shares. 

2. Compartment schemes. We restrict ourselves to the most important special 
case of compartment schemes: There are several user groups, namely the com­
partments Gb G2, ... , Gn. The requirements for the access structure are as fol­
lows: 
- in each compartment two participants are required to let it take part in the re­
construction of the secret; 
- the participation of two compartments is sufficient to reconstruct the secret. 
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A corresponding secret sharing scheme can be geometrically constructed in the 
following way (see Figure 6.8). We fix a line g in P = PG(n + 2, q). The service 
provider selects a point X E g as the secret. First, he randomly chooses a line h 
* g through X and n points Xl> X2, ... , Xn * X on h. Then he chooses 
through each point Xi a line gj (i = 1, 2, ... , n) such that the set {(h, gi)' i = 1, 
2, ... , n} u {(h, g)} of lines is independent (this means that it is a set of inde­

pendent points of P /h). These lines gi correspond to the compartments Gi· 
Eventually each participant of compartment G i is given a point Xi of gi differ-

ent from Xi' 

h----~~--~--~--~ 

Figure 6.8 A compartment scheme 

6.4.2 Theorem. The compartment scheme described above is a perfect secret 

sharing scheme. 

Proof We consider the reconstruction of the secret. The procedure is simple. One 
calculates the subspace U generated by all given points and intersects it with g. 

If the constellation of participants is legal, the obtained point is the secret. If at 

least two points on lines gk and gh are given (k * h), the points Xk and Xh are 
contained in U. Thus, h lies in U and so does X E U n g. Moreover, g ~ U 
because by assumption the planes (h, g) and (h, gi) are independent. 

Now we consider a nonlegal constellation of participants and show that each 

point of g can be reconstructed with the same probability. 
The best situation for an attacker is to know two shares PI> P j ' of one com­

partment G j and one share Pj ofthe other compartments Gj (j = 2, ... , m). Let 

X' be an arbitrary point of g. It is sufficient to show that 

is a subspace of dimension m + 1 intersecting g exactly in X'. 
Since the lines g, g 1> g2, . .. are independent, the subspace (U', h) has di­

mension m + 2, if X' is not equal to X. So for X' * X we have that dim(U', X') 
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= m + 1. Thus it remains to show that if X * X' the point X is not contained in 
U'. 

If m = 1, U j ' = (PI, PI', X') is a plane. If X' and X were contained in Ul', it 
would contain the two skew lines g and gb a contradiction. 

If m = 2 we proceed as follows: 

dim(U2') = dim«P}, Pt', P2, X'» = dim«Ul', P2» S; dim(Ul') + 1 = 3. 

On the other hand, dim(U2') 2 dim(U I') = 2. Assume that U2' is a plane. Then 
(U2', h) would be a 3-dimensional space containing the independent planes (h, 
g), (h, gl), (h, g2), a contradiction. 

One can prove similarly the cases m 2 3 (see exercise 12). o 

3. Multilevel schemes. In multilevel schemes, the participants are divided into 
hierarchically ordered groups. Here, we only deal with two level schemes, the most 
important multilevel schemes in practice. More precisely, in a multilevel (2, s)­

scheme, the participants are partitioned into two disjoint groups 3" and ~ such 
that the secret can only be reconstructed by the following constellations of partici­
pants: 

any set of at least two participants of :r, 
- any set of at least s participants of ~, 

any participant from :r together with at least s - 1 participants from ~. 

We define the following system. We fix a line g in P = PG(s, q), whose 
points are the potential secrets. After selection of a secret X, the service provider 
chooses a line h * g through X and a hyperplane H through h that only inter­
sects g in X. The shares corresponding to the participants of :r are points on h 
different from X. We denote the set of these points by :rh' The shares belonging 
to the participants of ~ are points of a set ~H of H with the following proper­

ties: 
- ~H u {X} is a set of points of H in general position. (For instance, one can 
choose SH U {X} as a subset of a normal rational curve of H.) 

- Any subspace through s - 1 points of ~H contains no point of :rh' 

As an example we consider the case s = 3. The secret sharing scheme is con­
structed using a 3-dimensional projective space P = PG(3, q). We choose a line 
h * g through the point X of g, a plane 1t containing h, but not g, and a nor­
mal rational curve :JC of 1t (a conic in this case) through X with tangent h. We 
must choose the sets 3"h ~ h and ~1t ~ J{ such that each line through two points 
of ~1t intersects the line h in a point outside ~fh (see Figure 6.9). 
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Figure 6.9 A multilevel (2, 3)-scheme 

6.4.3 Theorem. The construction above yields a perfect multi/eve! (2, s)-scheme. 

As proof we refer to exercise 13. 

Remark. In [BeWe93] it is shown how to choose the points of :Th and ~1t III an 
optimal way. 

To end this section we summarize the essential advantages of secret sharing 

schemes constructed using geometry. 
- In contrast to most of today's cryptographic mechanisms secret sharing 
schemes offer provable security on each arbitrary level! For each security level p 

there are systems for which the chance of cheating is at most p. 

- Secret sharing schemes can be implemented easily. Because the typical decep­

tion probability demanded today is in the range between 2-20 and 2-100 there 
are no arithmetical problems, at least compared to the requirements for RSA (with 

512 to 1024 bits) or similar algorithms (compare [BePi82], [Beu92]). 
- Secret sharing schemes offer an extremely comfortable participant manage­

ment. One can add users without changing anything in the computers used in the 

application phase. The removal of participants is more complicated, though. One 
could do this organizationally by using a blacklist. The best solution would be to 

withdraw all shares, and to choose a new line h and new shares. But this radical 

solution cannot be used too often in practice because it is very costly. 

Exercises 

1 Prove the theorem of Singer, 6.2.2, in spaces of arbitrary order q. 
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2 Prove that the following claim holds in Theorem 6.2.3: the incidence vector 
has one gap of length d + 1 and 2i gaps of length d - 1 - i (i = 0, 1, ... , 
d-2). 

3 Construct GF(8) by explicitly listing the elements and the addition and mul­
tiplication tables. 

4 Let N be a net with line set G. If one defines the relation lion G by 

5 

g 11 h <=> g = h or g and h have no point in common 

show that one obtains an equivalence relation with the property that there is 

exactly one line of each equivalence class ('parallel class') through each point 
of N. 

Let N be a finite net. 

(a) Show that through each point there is the same number r oflines. 
(b) If r > 2, show that each line contains the same number of points. 
(c) Is there a net with r = 2 in which not all lines have the same number of 

points? 

6 Let N be a finite net with q points on each line and r lines through each 
point. Show that r ~ q + 1 with equality if and only if N is an affine plane. 

7 Show that from each finite net a perfect authentication system can be con­
structed by the method described in section 6.3. 

8 In the following way, one obtains an authentication system: 

Fix a plane 1to in P = PG(3, q). In 1to we choose a set G* of lines, no three 
of which pass through a common point. 

The plaintexts are the lines of G*, 
- the keys are the points outside 1to, 
- the message belonging to the key k and data d is the plane (k, d). 

Show that the deception probability is 1/ q if no, one or two messages are 

known to an attacker. 

9 Generalize the previous exercise to PG(d, q). 

10 Let P = PG(d, q) be a projective space, and let U be a subspace of dimen­

sion i of P. Show that: 
(a) There are exactly qd- i-I + ... + q + 1 hyperplanes containing U. 
(b) Let P be a point outside U. Then there are exactly qd - i-I hyper­

planes containing U not passing through P. 
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11 (a) Show that one obtains a perfect threshold I-scheme in the following way 

(cf. [Sha79]). We consider the affme plane over a field F. As secret we 
choose a point (0, ao) of the y-axis. Then we choose a polynomial f of de­
gree t - 1 with absolute term ao. All other coefficients are chosen at random. 
The shares are points of the form (x, f(x». 
[Hint: The system is based on the fact that a polynomial of degree t - 1 can 

easily be reconstructed from any t of its values, for instance by Lagrange 

interpolation.] 
Cb) Is the system constructed in (a) perfect? 

12 Show 6.4.2 for the case m = 3. 

13 Prove 6.4.3. 

14 Generalize the construction 6.4.2 to the situation that I groups are needed for 
the reconstruction, and in each group G j a commitment of tj users is re­

quired. 

Project 

In this project we study an interesting authentication system. The system is not 
perfect, but still provably secure. Compared to a perfect authentication system, it 
has a large number of possible plaintexts, making it interesting for practical appli­
cations. It is also interesting from a geometrical point of view because important 

structures, namely spreads, play a central role. 
Let P = PG(3, q) with q = 3 mod 4. A spread of P is a set ff) of lines with 

the property that each point of P is on exactly one line of ff). It can easily be 
proven that (a) each spread of P has q2 + 1 lines and (b) each set of q2 + 1 

mutually skew lines form a spread. 
There are lots of spreads. The set ff) of lines of the form ga,b and gao form a 

spread ff): 

gh,k = <Cb, a, 1,0), (-a, b, 0, 1», 

gao = {(1, 0, 0, 0), (0,1,0,0». 

a, bE GF(q), 

This spread has a special property, it contains a regulus. The set :R 

{gaol u {ga,o I a E GF(q)} oflines of ff) is a regulus. 

1 Show that a set of skew lines in PG(3, q) is a spread if and only if it has 

q2 + 1 lines. 

2 Show that the set above defined as 

You should know the following notions 

ff) = { ga,b I a, b E GF(q)} u {gaol 

is a spread in PG(3, q). 

3 Show that the set 

:R= {gaol u {&. 0 I a E GF(q)} 

is a regulus in PG(3, q). 
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Now we can construct the authentication system A. Let ff) be a spread of P 
containing a regulus !:Il As plaintexts of A we choose all lines of ff)\g{, the keys 
are the points on the lines of !R; the message belonging to a plaintext d and a key 
k is the plane generated by the line d and the point k. 

Convince yourself of the following hypotheses: 

4 The authentication system A has q2 - q plaintexts and q2 + 1 keys. 

5 If an attacker inserts a message of his own devising at latest after the first 
authentic message has been sent, his probability of success is at most 
2/(q + 1). 

(For details see [BeR091].) 

You should know the following notions 

Algorithm, key, enciphering, one-time pad, authenticity, data integrity, data 

authenticity, authentication, authentication system, perfect authentication system, 
secret sharing scheme, threshold scheme, group scheme, hierarchical scheme, per­
fect secret sharing scheme, spread. 
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