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Preface 

It is amusing to browse through the prefaces of randomly selected geometry texts 
that have been published over the past century. The authors document the ups and 
downs of their discipline as it moves into and out of fashion. It appears today that 
geometry's status has reached a new low, as educators, who themselves have had 
meagre training in the subject, recommend cutting back on a student's exposure to 
geometry in order to make room in the curriculum for today's more fashionable 
topics. Of course, to those of us who have studied geometry it is clear that these 
educators are moving in the wrong direction. 

So why should a person study projective geometry? 
First of all, projective geometry is a jewel of mathematics, one of the out­

standing achievements of the nineteenth century, a century of remarkable mathe­
matical achievements such as non-Euclidean geometry, abstract algebra, and the 
foundations of calculus. Projective geometry is as much a part of a general educa­
tion in mathematics as differential equations and Galois theory. Moreover, projec­
tive geometry is a prerequisite for algebraic geometry, one of today's most vigor­
ous and exciting branches of mathematics. 

Secondly, for more than fifty years projective geometry has been propelled in a 
new direction by its combinatorial connections. The challenge of describing a 
classical geometric structure by its paran:ieters - properties that at first glance 
might seem superficial - provided much of the impetus for finite geometry, an­
other of today's flourishing branches of mathematics. 

Finally, in recent years new and important applications have been discovered. 
Surprisingly, the structures of classical projective geometry are ideally suited for 
modem communications. We mention, in particular, applications of projective 
geometry to coding theory and to cryptography. 

But what is projective geometry? Our answer might startle the classically 
trained mathematician who would be steeped in the subject's roots in Renaissance 
art and would point out that the discipline was first systematised by the seven­
teenth century architect Girard Desargues. Here we follow the insight provided by 
the German mathematician David Hilbert in his influential Foundations of Ge­
ometry (1899): a geometry is the collection of the theorems that follow from its 
axiom system. Although this approach frees the geometer from a dependence on 
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physical space, it exposes him to the real danger of straying too far from nature 
and ending up with meaningless abstraction. In this book we avoid that danger by 
dealing with many applications ~ among which are some that even the fertile mind 
of Hilbert could not have imagined. And so we side-step the question of what 
projective geometry is, simply pointing out that it is an extremely good language 
for describing a multitude of phenomena inside and outside of mathematics. It is 
our goal in this book to exploit this point of view. 

The first four chapters are mainly devoted to pure geometry. In the first chapter 
we study geometry from a synthetic point of view; here, notions such as basis, 
dimension, subspace, quotient space, and affine space are introduced. The second 
chapter presents what will be for us the most important class of projective spaces, 
namely those that can be constructed using a vector space; in other words, those 
projective spaces that can be coordinatized using a field. In analytic geometry one 
usually gets the impression that those are all the projective and affine spaces and 
no other structures are conceivable. In Chapter 3 we deal with precisely that ques­
tion: A masterpiece of classical geometry is the representation theorem for projec­
tive and affine spaces. It says that any projective or affine space that satisfies the 
theorem of Desargues is coordinatizable. In particular we shall show that any 
projective or affine space of dimension 2': 3 can be coordinatized over a vector 
space. Then we shall be able to describe all collineations (that is automorphisms) 
of Desarguesian projective spaces. In Chapter 4 we investigate the quadrics, which 
are probably the most studied objects in classical geometry. We shall look at them 
from a modem synthetic point of view and try to proceed as far as possible using 
only the properties of a 'quadratic set'. This has the advantage of a much better 
insight into the geometric properties of these structures. 

We shall consider not only geometries over the reals, but also their finite ana­
logues; in particular we shall determine their parameters. Moreover, at the end of 
each chapter we shall present an application. This makes it clear that some appli­
cations are based on remarkably simple geometric structures. 

In the two final chapters we shall concentrate on important fields of applica­
tions, namely coding theory and cryptography. The aim of coding theory is to de­
velop methods that enable the recipient of a message to detect or even correct er­
rors that randomly occur while transmitting or storing data. Many problems of 
coding theory can be directly translated into geometric problems. As to Clyptog­
raphy, one of its tasks is to keep information secret by enciphering it. The other 
task is to protect data against alteration. Surprisingly, cryptosystems based on ge­
ometry have excellent properties: in contrast to most systems used in practice they 

Preface ix 

offer provable security of arbitrarily high level. In Chapter 6 we shall study some 
of these systems. 

From a didactical point of view, this book is based on three axioms. 
1. We do not assume that the reader has had any prior exposure to projective or 
affine geometry. Therefore we present ever the elementary part in detail. On the 
other hand, we suppose that the reader has some experience in manipulating 
mathematical objects as found in a typical first or second year at university. No­
tions such as 'equivalence relation', 'basis', or 'bijective' should not strike terror 
in your heart. 
2. We present those parts of projective geometry that are important for applica­
tions. 
3. Finally, this book contains material that can readily be taught in a one year 
course. 

These axioms force us to take shortcuts around many themes of projective ge­
ometry that became canonized in the nineteenth and twentieth centuries: there are 
no cross ratios or harmonic sets, non-Desarguesian planes are barely touched 
upon, projectivities are missing, and collineation groups do not play a central role. 
One may regret these losses, but, on the other hand, we note the following gains: 
~ This is a book that can be read independently by students. 
~ Most of the many exercises are very easy, in order to reinforce the reader's 
understanding. 
~ We are proud to present some topics for the first time in a textbook: for in­
stance, the classification of quadrics (Theorem 4.4.4) in finite spaces, which we 
get by purely combinatorial considerations. Another example is the geometric~ 
combinatorial description of the Reed~Muller codes. Finally we mention the theo­
rem of Gilbert, MacWilliams, and SIoane (see 6.3.1), whose proof is ~ in our 
opinion ~ very illuminating. 
~ Last but not least, we describe the geometrical structures in Chapters 1 and 4 
by diagrams, an approach that has led over the past twenty years to a fundamental 
restructuring of geometrical research. 

To collaborate on a book is a real adventure, much to our surprise. In our case we 
had throughout an enjoyable collaboration, which was always intense and exciting 
~ even when our opinions were far apart. Many arguments were resolved when 
one of us asked a so-called 'silly question', and we were forced to thoroughly re­
examine seemingly clear concepts. We hope that all this will be an advantage for 
the reader. 
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1 Synthetic geometry 

From the ancient beginnings of geometry until well into the nineteenth century it 
was almost universally accepted that the geometry of the space we live in is the 
only geometry conceivable by man. This point of view was most eloquently for­
mulated by the German philosopher Immanuel Kant (1724-1804). Ironically, 
shortly after Kant's death the discovery of non-Euc1idean geometry by GauB, Lo­
bachevski, and Bolyai made his position untenable. Today, we study in mathe­
matics not just one geometry, or two geometries, but an infinity of geometries. 

This means: When you start learning geometry (the subject), you are immedi­
ately offered geometries (structures) in pluraL There is not a unique geometry, but 
many geometries, and all have equal rights (even though some might be more in­
teresting than others). 

1.1 Foundations 

It is typical of geometry that we study not only one type of object (such as points), 
but different types of objects (such as points and lines, points, lines, and planes, 
etc.) and their relationships. We first define a very general notion of geometry 
which can be used to describe all possible geometries. 

Definition. A geometry is a pair G = en, I), where n is a set and I a relation 
on n that is symmetric and reflexive; this means the following. 
- If (x, y) E I then also (y, x) E I. 

- (x, x) E I for all x E n. 

What is the idea behind this definition? The idea is that the set n contains all 
geometrically relevant objects and I describes their being 'incident'. Let us con­
sider some examples. 

Before doing this we note the follO\ving. In many situations the 'natural' inci­
dence relation is set-theoretical inclusion. This relation is not symmetric, but can 
easily be made symmetric by defining that two elements are incident if one is 
contained in the other. Usually, we shall not mention this explicitly. 
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Examples. (a) In classical 3-dimensional geometry, Q is the set of points, lines, 
and planes of Euclidean space. If one is interested only in the Euclidean plane then 
Q is only the set of points and lines. But our imagination should have no limits: 
Q could be the set of all subsets of a set, or the set of all lines and circles of the 
Euclidean plane, etc. 
(b) We get another geometry by looking at the cube. In this case the set Q could 

consist of the eight vertices, the twelve edges, and the six faces of the cube (see 

Figure L 1). The relation I is set-theoretical inclusion. 

Figure 1.1 The cube 

(c) A quite different example is the following. The set Q is a set of humans; two 

humans are incident if one is a descendant of the other. For a particular group of 
persons (family B) this looks as shown in Figure 1.2. 

Figure 1.2 Family B 

The strokes indicate direct descent; hence two persons are incident if there is an 
upwards series of strokes leading from one person to the other. 

In geometry the relation I describes 'containment' among the elements of Q­

'planes contain lines and points', 'lines contain points', etc. One also describes 
this as incidence and therefore calls I the incidence relation of the geometry G. 

1.1 Foundations 3 

Two elements of the geometry G that are related by I are called incident. If x 
and y are two elements of Q with (x, y) E I, then one simply writes x I y or 

y I x. 

If Q' is a subset of Q then one can consider the subgeometry G' of G be­
longing to Q': It consists of the elements of Q' and the relation I' that is the 
restriction of I to Q'; one calls I' the incidence relation induced by L Thus, two 
elements of Q' are incident in G' if they are already incident in G. 

In our example of 3-dimensional Euclidean space, a point P and a plane 1t 

are incident (P I 1t) if P is a point in the plane 1t. Similarly, for a line g and a 

plane 1t we have g I 1t if and only if the line g is completely contained in 1t. 

(We usually denote a line by g; this is due to the German word 'Gerade' for 
'line' .) 

If Q' is the set of points in the interior of the unit circle together with the set of 
lines that intersect the unit circle in two points, then one can describe the induced 

incidence in such a way that a point and a line of Q' are incident if and only if 
they are incident as elements of Q. 

Definition. Let G = (Q, I) be a geometry. A flag of G is a set of elements of Q 

that are mutually incident. A flag 3' is called maximal if there is no element 
x E Q \3' such that 3' v {x} is also a flag. 

Examples. (a) Let Q be a point, g a line, and 1t a plane of 3-dimensional 
Euclidean space with Q E g and g <;::;;; 1t. Then the following sets are flags: 

{Q}, {g}, {n}; 
{Q, g}, {Q, n}, {g, n}; 
{Q, g, n}. 

Only the last flag is maximal (see Figure 1.3). 

Figure 1.3 A flag 

(b) Considering the geometry of the cube one notices that a maximal flag consists 
of precisely one vertex, one edge, and one face. Thus any maximal flag has pre­

cisely three elements. 
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(c) In the descendant geometry of family B there are maximal flags of 2, 3, or 4 
elements. 

Definition. We say that a geometry G = (Q, I) has rank r if one can partition 
Q into sets Qb' .. , Q r such that each maximal flag of G intersects each set Q i 

in exactly one element. In this case the elements of Q i are called elements of 
type i. 

In particular, in a geometry of rank r each maximal flag has exactly r ele­

ments. 

Examples. (a) In 3-dimensional Euclidean space we choose as Q 1 the set of all 
points, as Q 2 the set of all lines, and as Q 3 the set of all planes. This gives a 

geometry of rank 3. 
(b) If we take as Q] the set of vertices, as Q 2 the set of edges, and as Q 3 the 
set of faces of the cube, we get a geometry of rank 3. 
(c) The descendant geometry of family B cannot be considered a geometry of 
rank r for any r, since there are maximal flags of different lengths. 
(d) Let mL be a set, and let r be a positive integer with r < ImLl. Then we can 
define a rank r geometry by defining as elements of type i the subsets of mL 
having exactly i elements (1 :0:; i :0:; r); as incidence we choose set-theoretic inclu­

sion. In other words, 

and 

Q := Q] u Q 2 U ... u Qr-

(e) Similarly, we can obtain from a vector space V of dimension z r a geometry 
of rank r: 

Q j := {U I U is a subspace of V with dim(U) = i} (1:0:; i :0:; r), 

and 

where incidence is set-theoretic inclusion. 
(t) You will find a further example in exercise 1. 

Let G be a geometry of rank r, and let Qt be the set of elements of type i (i = 

1, 2, ... , r). Let G' = (Q\Qi, Iind) be the geometry on the set Q\Qj with the 
incidence being induced from G. Then G' is a geometry of rank r - 1. In par­
ticular one can consider any geometry of rank r z 2 as a rank 2 geometry. This 

1.2 The axioms of projective geometry 5 

we will do often. For instance, we shall describe many geometries only by their 
points and lines or by their points and 'hyperplanes'. 

1.1.1 Lemma. Let G be a geometry of rank r. Then no two distinct elements of 
the same type are incident. 

Remark. The lemma expresses a natural idea: a line can be incident with a point or 
a plane, but one usually does not consider two lines to be incident. 

Proof Assume that there exist two distinct elements of the same type that are inci­
dent. These elements form a flag. We consider a maximal flag 3' that contains 
these two elements. But :f contains two elements of the same type, contradicting 
the definition of a geometry of rank r. 0 

A geometry G = (Q, I) of rank 2 is often called an incidence structure. In this 
case one calls the elements of type I points and the elements of type 2 blocks. If 
G is an incidence structure with point set fJ' and block set ffi then one also 
writes G = (fP, ffi, I). 

In this book we shall mostly deal with incidence structures for which it makes 
sense to call the blocks lines; our fundamental axiom will be that any two distinct 
points uniquely determine a block. 

Now we can describe the aim of the first chapter. We start from a geometry of 
rank 2, which consists of the points and lines of a 'projective space', a concept 
defined by very simple axioms. From this we shall develop all of projective ge­
ometry - the structure consisting of all subspaces of projective and affine spaces. 

1.2 The axioms of projective geometry 

From now on, let G = (fP, 2, I) be a geometry of rank 2; the elements of the block 
set 2 will be called lines. Following Euclid, we usually denote points by upper 
case letters; we denote lines by lower case letters. If PIg is true, we shall also 
saythat'P is incident with g', 'P lies on g', 'g passes through P', and so on. 

Later on we shall convince ourselves that in all interesting cases instead of 
'P I g' we may also write (and think) 'P E g'. 

Now we introduce the axioms that are fundamental for projective geometry 
(hence afortiori for this book). 
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Axiom 1 (line axiom). For any two distinct points P and Q there is exactly one 
line that is incident with P and Q. 
This line is denoted by PQ. 

PQ 

This axiom immediately implies the following assertion. 

1.2.1 Lemma. Let g and h be two distinct lines. Then g and h are incident 
with at most one common point. 
If such a point exists, it will be denoted by g n h. 

Proof Assume that there exist two distinct points P and Q incident with g and 
h. By axiom 1 there is just one line through P and Q; hence g = h, a contradic­

tion. 0 

Axiom 2 (Veblen-Young). Let AB, C, and D be four points such that AB 

intersects the line CD. Then AC also intersects the line BD. 

P 

The following formulation of the Veblen-Young axiom is more concise and there­

fore easier to learn: if a line (in our case BD) intersects two 'sides' (namely AP 
and CP) of a triangle (in our case APC) then the line also intersects the third 
side (namely AC). 

Remarks. 1. The Veblen-Young axiom is a truly ingenious way of saying that any 

two lines of a plane meet - before one knows what a plane is. 
2. Some people call the Veblen-Young axiom the axiom of Pasch, because the 
German geometer Moritz Pasch (1843-1930) used a similar picture. 

1.2 The axioms of projective geometry 7 

Pasch's aim, however. was different. He used his axiom to introduce order in ge­

ometry. More precisely, his axiom reads: if a line g intersects one side of a trian­
gle internally, then it intersects precisely one other side internally and the third 
side externally. 

In introducing the Veblen-Young axiom we took a turn that you probably did not 

expect: we exclude the existence of parallel lines. You might at this point be so 

taken aback that you feel like throwing the book aside in disgust - we seem to be 
studying geometries 'that do not exist'. But this would be too hasty on your part, 

since we shall soon meet 'affine geometries', for which intuitive geometry serves 
as a prototype. Furthermore, it will turn out that projective and affine geometry 
are basically the same thing. even though projective geometry is much easier to 
work with. 

Axiom 3. Any line is incident with at least three points. 

Definition. A projective space is a geometry P = (H', .£, I) of rank 2 that satisfies 
the axioms 1,2, and 3. A projective space P is called nondegenerate if it also 
satisfies the following axiom 4. 

Axiom 4. There are at least two lines. 

From now on we suppose that P = (9', £, I) 
is a nondegenerate projective space. 

We usually say, more briefly, that P is a projective space. 

Axiom 2 says that under certain conditions, two lines of a projective space inter­
sect. If each pair of lines intersects (without any further hypothesis) then one has a 
projective plane. 
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Definition. A projective plane is a nondegenerate projective space in which ax­
iom 2 is replaced by the stronger axiom 2': 

Axiom 2'. Any two lines have at least one point in common. 

An important property is the principle of duality for projective planes. We first 
formulate this principle in general and shall then prove that the principle of duality 
holds for projective planes. Later on (in Section 2.3) we shall also investigate the 
principle of duality in projective spaces. 

Let A be a proposition concerning geometries of rank 2, whose elements we 
shall call points and blocks. We get the proposition AI" dual to A by inter­
changing the words 'point' and 'block'. 

Example. If A is the proposition 'there exist four points no three of which are 
incident with a common block'. then All is the proposition 'there are four blocks 
no three of which pass through a common point'. 

Let G be a geometry of rank 2 with point set 0 1, block set O2 , and incidence 
set I. Then the geometry GLl dual to G has point set O2 , block set Ob and 
two elements of Gt. are incident if and only if they are incident as elements 
of G. 

Note that the definition implies that (GLl)Ll = G. 

1.2.2 Theorem (principle of duality). Let X be a class of geometries of rank 2. 

We suppose that X has the property: if X contains the geometry G, then it also 

contains the dual geometry Gt.. Then the follOWing assertion is true: 

if A is a proposition that is true for all G in X, then All is also true for all 

G in :'K. 

Proof Let G be an arbitrary geometry in X. For G':= Gt, we have that 
G't, = G. Since G' is a geometry in :'IC the proposition A holds for G'. Hence 
G't, = G satisfies the assertion At.. 0 

1.2 The axioms of projective geometry 9 

In order to prove the principle of duality for projective planes we need the fol­
lowing lemma. 

1.2.3 Lemma. Any projective plane P also satisfies the propositions that are 
dual to the axioms 1, 2~ 3, and 4. 

Proof Axiom 1. The proposition that is dual to axiom I is 'any two distinct lines 
have exactly one point in common'. This is a true statement, since by 1.2.1 any 

two distinct lines have at most one point in common and by axiom 2' they have at 
least one point in common. 

Axiom 2'. The proposition dual to axiom 2' is 'any two distinct points are inci­
dent with at least one common line'. This follows directly from axiom 1. 

Axiom 3. The proposition dual to axiom 3 is 'any point is on at least three 
lines'. 

In order to see this we consider an arbitrary point P of P. If we already knew 
that there is a line g not incident with P, then we could proceed as follows. By 
axiom 3 there are at least three points P1, P2 , P3 on g. Then PP!> PP2, PP3 are 
three distinct lines through P. 

Why is there a line g not incident with P? If to the contrary all lines pass 
through P then, by axiom 4, there are two lines g1 and g2 through P. By ax­
iom 3 there is a point Qj"* P on gj (i = 1,2). Then g = QJQ2 is a line not inci­
dent with P, a contradiction. 

Axiom 4. The proposition dual to axiom 4 is 'there exist two distinct points'. 
This follows easily from axioms 4 and 3. 0 

If we consider the lines of a projective plane P as new points, and its points as 
new lines, we again get a projective plane. This plane pt. is called the dual plane 
of P. 

The preceding lemma has a remarkable consequence: roughly speaking, for 
projective planes we have to prove only' one half of all assertions. 

1.2.4 Theorem (principle of duality for projective planes). If a proposition A 
is true for all projective planes then the dual proposition At, also holds for all 
projective planes. 

Proof If A is true for all projective planes P then At, holds for all geometries 
of the form pt., hence for all dual projective planes. Furthermore we can represent 
any projective plane Po as a dual projective plane: if PI := Pot, then Po = 

(Pot,)t. = p 1t.. 0 
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Warning: The principle of duality does not say that P and pt. are isomorphic. 
Of course, sometimes a projective plane might be isomorphic to its dual (see 

2.3.5). 

So far we have studied the axioms for projective geometry. Now we have to intro­

duce the notions which will help us to investigate projective spaces. 

1.3 Structure of projective geometry 

Definition. A subset 6l.1 of the point set !Jl is called linear if for any two points P 
and Q that are contained in "1L each point of the line PQ is contained in GU, as 

well. 

If we denote the set of points incident with a line g by (g), then we can express 
the above definition as follows: the point set "1L is linear if and only if for any two 

distinct points P, Q E "1L we have (PQ) c;;;; "1L. 
Obviously, for any linear set o.lL of P the geometry P(GlL) with 

where 2' is the set of lines of P that are totally contained in 6l.1 and I' is the 
induced incidence, is a - possibly degenerate - projective space. We call U = 

P(6l.1) a (linear) subs pace of P. If no confusion is possible, we shall not distin­

guish between a linear set and the corresponding subspace. 

Examples, The following sets of points are linear sets (or subspaces): the empty 
set, any singleton, the set of points on a line and the whole point set !J'. In par­

ticular, any subset of g> is contained in at least one linear set. 
Since the intersection of arbitrarily many linear sets is again linear, we can de­

fine the span (\X.) of a subset (iX'" of ~p as follows: 

In other words, (\X.) is the smallest linear set containing \X.. We shall also say 
that \X. spans or generates (\X.) and shall call (\X.) the subspace spanned by 

\'X:. 
Instead of ({P" P2, ... }) we shall also write (P" Pz, ... ); furthermore we 

shall use 'mixed' expressions: instead of «(iX'" u {P}) we simply write (\'X:, P), 

etc. We also write (U, W) for two subspaces U and W. 

1.3 Structure of projective geometry 11 

Examples. The span of the empty set is the empty set, the span of a singleton {P} 

is again {P}, the span of a 2-element subset rp, Q} is the set (PQ) of the points 
on PQ. 

Definition. A set mL of points is called collinear if all points of mL. are incident 
with a common line. The set mL. is called noncollinear if there is no line that is 
incident with all points of mL.. 

The span of a set of three noncollinear points is called a plane. 

We defined subspaces 'top down' as the smallest linear sets containing the gener­
ating set. Our first aim is to describe how the subspaces can be built 'bottom up' -
how they can be constructed starting with the generating set. It turns out that this 
can be done in the easiest conceivable way. This is a characteristic property of 
projective spaces. 

The following important theorem describes this recursive construction. Most 
results in this section depend heavily on this theorem. 

1.3.1 Theorem. Let 6l.1 be a nonempty linear set of P, and let P be a point of p, 
Then 

(o.lL, P) = U {(PQ) I Q E o.lL}. 

In other words, the span of 6l.1 and P can be described easily: it consists just of 
the points on the lines joining P and the points Q of o.lL. 

Furthermore, each line of ("1L, P) intersects "11. 

Before proving the theorem we shall explain the first nontrivial case. If 6l.1 is the 
set of points on a line g then the plane ("1L, P) = (g, P) consists precisely of the 
points on the lines PQ such that Q I g (see Figure 1.4). 

P 

Figure 1.4 Span of a line and a point 

Now we shall prove 1.3.1. One inclusion is easy: since ("1L, P) is a linear set it 
contains with any two points P and Q also any point on PQ, therefore 
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U {(PQ) I Q E 01L} ~ (01L, P). 

We claim: in order to prove the other inclusion it is sufficient to prove that the set 

~)t:= U {(PQ) I Q E "1L} 

is linear. For it then follows that 

(GtL, P) = n tu I P E "Cl, GtL~"C), "Cl is linear} 

= n tu I PE "Cl, "1L~"Cl."C) is linear, "Cl"* '<'Il} n \'Il 

~m, 

since ';)t contains P and 0l1, and is, by assumption, a linear set. 
In order to prove that ~)l is linear we consider a line g that contains two dis­

tinct points R, S of ';)t, and show that any point X of g lies in m. We distin­

guish different cases. 
- If Rand S are both contained in the linear set 01L then we trivially have 

(g) = (RS) ~ 01L~ ';Il. 

- If the line g contains the point P then it is of the form g = PQ with Q E 01L. 

For g contains two distinct points of \'Il and passes through P, hence it must be 
one of the lines through P defining <;)1. 

Thus we may assume that g does not contain P. We examine two more diffi­

cult cases. 
- First, let R be a point of 61L, but S 9" 01L(see Figure 1.5). 

Figure 1.5 The line SR lies in (GtL, p) 

Since S is in ';)t, by definition of ';)l the line PS intersects the set 61L in a 

point S'. 
Let X be an arbitrary point on g. In order to show that X is in \,)t we may 

assume that X"* R, S. The line PX intersects the sides of the triangle R, S, S' in 
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the two distinct points P and X. By the Veblen-Young axiom, PX also inter­
sects the line RS' in some point X'. Since X' E (RS') ~ GtL it follows that X E 
(pX')~m. 

- Finally we have to consider the case that neither R nor S lies in 61L. 
Since R and S are points of \')t there exist points R', S' E "1L with RE (PR') 

and S E (PS'). Since g does not pass through P the line g intersects the trian­
gle P, R', S' in the two distinct points Rand S. Again by Veblen-Young the 
lines g and R'S' meet in some point T. Therefore g = ST with T E 01L, and by 
the preceding case we have (g) ~ ';)t. 

The proof also shows that each line of (61L, P) intersects 61L. o 

Remark. The above theorem says in particular that all subspaces of a projective 
space are uniquely determined by their sets of points and lines. This means that 
from the properties of the rank 2 geometry of points and lines the whole geometry 
can be described. 

Using the tools developed so far we shall be able to introduce the notions of 
'basis' and 'dimension' of a projective space. The following exchange property is 
fundamental. 

1.3.2 Theorem (exchange property). Let "1L be a linear set of P, and let P be a 

point of P that does not lie in "1L. Then the following implication is true: 

if Q E (6lL, P) \ "lL then P E (GtL, Q), hence also (61L, P) = (GtL, Q). 

One can also express this as follows: any two distinct subs paces through "1L that 
are spanned by "lL and a point outside "1L intersect only in points of "1L. 

Figure 1.6 Intersection of subspaces 

Proof Since Q E (GtL, P)\"lL, by 1.3.1, there is a point Q' in GtL such that 
P E (QQ') ~ (GtL, Q). 
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This implies immediately that the two subspaces in question are equal: in view 
of Gll~ <"11, Q) and P E ("11, Q) it follows that ("11, P) ~ ("11, Q). Similarly, one 
shows the other inclusion. 0 

Definition. A set 93 of points in the projective space P is called independent if 
for any subset 93' ~ ffi and any point P E ffi \ffi' we have that 

P ~ (ffi'). 

In order to show that a set ffi of points is independent one has to prove that there 
is no point PE 93 for which PE (ffi\ {P}) is satisfied. (When PE (ffi\ {P}) we 
call ffi dependent.) 

An independent set 93 of points that spans P (that is (ffi) = P) is called a ba­
sis of P. 

Examples of independent point sets are easy to find: any singleton is independent; 
any two distinct points form an independent set; three points are independent if 
and only if they are not on a common line. Moreover, it is clear that every subset 
of an independent set is independent. 

1.3.3 Theorem. A set ffi of points of P is a basis of P if and only if ffi is a 

minimal spanning set. that is if 9j spans P, but no proper subset of ffi spans P. 

Proof First, let 93 be a basis. Then, by definition ffi spans P. Assume that there 
exists a proper subset 93' c 93 such that (ffi') = P. Then there would exist a point 
PE 93\93' which would satisfy PE (9)'), contradicting the independence of ffi. 

Conversely, let ffi be a minimal spanning set. We have to show that 93 is in­
dependent. Assume that ffi is not independent. Then there exists a point P in ffi 
such that P E (93\ {P}). This implies 

P = (ffi) = (ffi\ {P} u {P}) = (ffi\ {P}, P) ~ (ffi\ {P}). 

Hence ffi \ {P} would already span P, contradicting the minimality of ffi. o 

Definition. The projective space P is called finitely generated if there is a finite 

set of points that spans P. 

In the following let P be a finitely generated projective space. 

Warning: This does not imply immediately that any basis of P is finite. Also, this 
does not follow from the next theorem. We will later on obtain this property as a 
corollary of the Steinitz exchange theorem. 
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1.3.4 Theorem. Let & be ajinite spanning set of P. Then there exists a basis ffi 
of P such that ffi ~ &. In particular, P has afinite basis. 

Proof Define &0:= &. If &0 is a minimal generating system then, by the preced­
ing theorem, &0 is a basis. Otherwise there is a proper subset &1 of &0 that 
spans P as well. 

Since & is finite, after a finite number of steps we must obtain a minimal 
spanning set 93 = &n ~ &, which is a basis. 0 

1.3.5 Lemma. Let 93 be an independent set of points of P, and let ffi I, 932 be 
subsets of 93. If ffi is jinite then 

Proof In view of 93] n ffi2 ~ ffi], ffi2 we have that (93] n ffi2) ~ (93]) n (ffi2)' 
The other inclusion is more difficult and will be proved by induction on 19311. 
If ffiI = 0 then the assertion follows trivially. 
Suppose that 19311 ~ 1 and assume that the assertion is true for sets with 

19311- 1 elements. We may assume that ffi] is not a subset of ffi2. Otherwise 
93 1 ~ 932 and so 

We suppose that 93] er- ~.B2' Consider a point P of 93 1 \932, By induction, the 
assertion is true for the set 93 1':= ffi I \ {P} . 

Assume that there is a point X such that 

X E (931) n (932»)\(ffi1 n ffi2)' 

If X were a point of (ffi1') then it would be contained in (931') n (932), so, by 
induction, X E (93}' n 932) and therefore X E (ffi1 n 932), 

This contradiction shows that the hypothetical point X must be a point of 

Using 1.3.2 (exchange property) it then follows that P E (931', X). Since X also 
lies in (932) we obtain 

PE (ffi1" X) ~ (~J)l" (932» = <~J)I" 932) = (ffi1' U ffi2)' 

By the choice of P we have P ~ 932; moreover, P ~ 931'. Therefore we get a 
contradiction to the independence of 93: 930 := ffiI' u 932 ~ 93 satisfies P E (930) 
but P ~ 930, 0 
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The next theorem is the Steinitz exchange theorem for finitely generated projec­

tive spaces. It is convenient to handle the most important special case first. 

1.3.6 Exchange lemma. Let 93 be a finite basis of P, and let P be a point of P. 

Then there is a point Q in 93 with the property that the set 

(93\{Q})u {P} 

is also a basis of P. 
Such a point Q can be found in the following way. There is a subset 93' of 93 

such that PE (93'), but P \l (93") for any proper subset 93" of 93'. Thenfor any 
point Q E 93' the set (93\ {Q}) u {P} is a basis of P. 

Proof Since 93 is a finite set there exists a subset 93' of 93 with the following 

property: 

PE (93'), but P \l (93") for any proper subset 93" of 93'. 

Let Q be an arbitrary point of 93'. 
Claim: The set 93 1 :=(93\{Q})u {P} isabasisofP. 

For this we first show that P \l (93\ {Q}). Assume that P E (93\ {Q}). Then, 

by 1.3.5 we get 

PE (93\{Q}) n (93') = «93\{Q}) n93') = (93'\{Q}), 

contradicting the minimality of 93'. 

In view of the exchange property 1.3.2 we obtain 

(93 1) = (93\{Q}, P) = (93\{Q}, Q) = (93) = P. 

Thus 93 1 spans P. 
It remains to show that 93 1 is independent. Assume that 93 1 is dependent. 

Then there is a point X E 93 1 such that X E (91 1 \ {X} ). 
If X=P then PE (93 I \{P}). Since 93 1\{P} =93\{Q} and PE (93') we get 

in view of 93 \ {Q}, 93' ~ 93, and 1.3.5 

PE (93\{Q}) n (93')= «93\{Q}) n93') = (93'\{Q}), 

contradicting the minimality of 93'. 
Therefore we have X E 93 \ {Q}. By our assumption, X E (93 1 \ {X}) = 

(93\{Q, X}, P). Since 93\{Q} is independent it follows that X \l (93\{Q, X}). 

In view of 1.3.2 we now get 

PE «93\ {Q, X}), X) = (93\ {Q, X}, X) = (93\ {Q}). 

As in the case X = P we can deduce a contradiction to the minimality of 93' as 

follows: 
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PE (93\{Q}) n (93') = (93'\{Q}). 

This shows that 93 1 is independent. o 

1.3.7 Steinitz exchange theorem for projective spaces [Stei13]. Let 93 be a 
finite basis of P, and let r := 1931· if e is an independent set having s points then 
we have: 
(a) s ~ r. 

(b) There is a subset 91* of 93 with 193* I = r - s such that e u 93* is a basis of 
P. 

Proof First we suppose that e is a finite set and prove the assertion by induction 
on s. 

If s = 1 then the assertion follows directly from the exchange lemma. 

Suppose now s > 1 and assume that the assertion is true for s - 1. Let P be 
an arbitrary point of e. Then e':= e\ {P} is an independent set with s - 1 
points. Thus, by induction, the following assertions are true: 
- s - 1 ~ r. 
- There is a subset 93' of 93 with 193'1 = r - (s - 1) such that e' u 93' is a basis 
of P. 

Claim: We also have s ~ r. Otherwise, s - 1 = r, so 93' = 0. Thus e' would be a 

basis of P. In particular, P E (e') contradicting the independence of e. Thus (a) 
is proved. 

(b) Since 93 is finite there exists a subset 93" of e' u 91' such that PE (93"), 

but P is not contained in the span of any proper subset of 93". Then 91" n 93' 7:-

0. Otherwise, in view of 1.3.5 we would obtain the following contradiction to the 
independence of e: 

PE (93") n «e' u 93'» = (93" n (e' u 93'» ~ (93" n er) ~ (er) = (e\ {P}). 

By the exchange lemma, for each Q E 93" n 91' the set (e' u (93'\ {Q})) u {P} 
is a basis. Since 

(e' u (93'\ {Q})) u {P} = (e' u {P}) u (93'\ {Q}) = eu (93'\ {Q}), 

the assertion (b) follows if we define 93* := 93'\ {Q}. 

Finally we consider the case that e is an infinite set. Then e would contain a 

finite subset having exactly s' = r + I elements, and by the above discussion we 

would get 

r + 1 = s' ~ r, 

a contradiction. o 
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An easy, but important corollary is the following assertion, 

1.3.8 Basis extension theorem. Let P be a finitely generated projective space. 

Then any two bases of P have the same number of elements. Moreover. any inde­

pendent set (in particular any basis of a subspacej can be extended to a basis 

ofP. 

Proof By 1.3.4 the projective space P has a finite basis; let r be the number of 

elements in this basis, By the Steinitz exchange theorem 1.3.7 any independent 

set, in particular any basis. has at most r elements. In particular any basis of P is 

finite, If 95 1 and 952 are two bases then 1.3.7(a) implies IffiIl ~ lill21 as well as 

19521 ~ 195 11. 
The second assertion directly follows from 1.3. 7(b), o 

Definition. Let P be a finitely generated projective space, If d + 1 denotes the 

number of elements in a basis (which, by 1.3.8, is constant) then we call d the 
dimension of P and write d = dim(P). 

1.3.9 Lemma. Let U be a subs pace of the finitely generated projective space P. 

Then the following assertions are true: 

(a) dim(U) ~ dim(P), 

(b) We have dim(U) = dim(P) if and only if U = P 

Proof (a) Any basis of U is an independent set of p, By 1.3.8, it contains at 

most dim(P) + 1 elements, Hence dim(U) is finite, and we have dim(U) ~ 
dim(P), 

(b) One direction is trivial. If, conversely. dim(U) = dim(P), then any basis ill of 
U is a basis of P as well; thus U = (ill) = p, 0 

Definition. Let P be a projective space of finite dimension d, The subspaces of 

dimension 2 are called planes, and the subspaces of dimension d - 1 are called 
hyperplanes of p, 

We denote the set of all subspaces of P by "lL(P) , We call "lL(P) together 
with the subset relation ~ the projective geometry belonging to the projective 
space p, 

The empty set and the whole space are called the trivial subspaces, The set of 

all nontrivial subspaces is denoted by GlL*(P). 

It will not be necessary to distinguish between a 'projective space' and its cor­
responding 'projective geometry', since each uniquely determines the other. 
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Using the notions presented in Section 1.1 one can say: "l1*(P) is, together with 
the relation ~. a geometry of rank d (see exercise 24), 

1.3.10 Lemma. Let P be a d-dimensional projective space, and let U be a t­

dimensional subs pace of P (-1 ~ t ~ d). Then there exist d - t hyperplanes of P 

such that U is the intersection of these hyperplanes. 

Proof Let {Po, Plo' , ., Pt} be a basis of U, Using 1.3.7 we can extend it to a 

basis 95 = {Po, PI.' , '. Pt. Pt + )., , .• P d} of p, Ifwe define 

Hi:= (ill\{P/ + il) (i= 1"." d-t). 

then we obtain d - t hyperplanes H) •.. " Hd _ t, By 1.3.5 (see also exercise 25) 
their intersection can be computed as follows: 

H) n , , ,n Hd - t = ({Po. Plo' . '. Pt, Pt - 2, . , " P d}) n , , , 

n ({Po. p)". " Pt. Pt +).·,·, Pd - tl) 
= ({Po, Plo"" Pt, Pt-rb"" Pd} n", 

n {Po. Plo' , ., PI' PI + ), ... , P d- d> 
= ({Po, Plo' , " Pt} > = u, o 

1.3.11 Theorem (dimension formula). Let U and W be subs paces of p, Then 

dime (U. W» = dim(U) + dim(W) - dim(U n W). 

Before the proof we shall discuss an example. Two distinct lines g and h gener­

ate a plane if and only if they have a point in common (for then dim(gnh) = 0); 
otherwise they generate a 3-dimensional subspace, 

Proof We choose a basis a= {Plo' . "Ps} of Un W and extend it (by 1.3.8) to 
a basis ill of U and to a basis e of W: 

95 = {Plo' , ., Ps' Ps + l> .. "Ps + I}, e= {PI>' . "Ps' Qs -+-), .•• , Qs + ,o}, 

It suffices to show that 95 u e is a basis of (U, W). For then 

dim(U, W» = lill u el- I 

= s + t + s + t' - s - 1 = s + t - 1 + s + t' - 1 - (s - 1) 

= dim(U) + dim(W) - dim(U n W). 

In view of (U, W) = (ill, e) = (ill u e), the set ill u e certainly spans (U, W). 

It remains to show that ill u e is an independent set, In order to do this we first 
convince ourselves of the following claim: 
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Un (evt) = 0. 

Assume that there exists a point X E Un (evt). Since (e\et) c;;;;; W, the point 
X would be contained in W and hence in Un W. Using 1.3.5 we would get a 
contradiction as follows: 

X E (U n W) n (e\et) = (et) n (eVt) = (0) = 0. 

Now assume that 9\ u e is not independent. Then there is a point P E 9\ u e 
with PE «93 u e)\ {P}). We may assume that PE 9\. It follows that 

PE «9\ u e)\ {P}) = (9\\ {P}, e\et) = «9\\ {P}), (e \Ci». 

The 'join theorem' (exercise 16) says that there are points T E (e\et) and S E 
(9\\{P})c;;;;;U suchthat PE (ST). 

We claim: the line ST intersects U in just one point, namely S. If to the con­
trary ST were to contain two distinct points of U then any point of ST, in par­

ticular T, would be contained in U. In view of T E (e\Ci) this contradicts the 
above assertion. 

Since the point P satisfies PE Un ST we have P = S E (9\\{P}), contra-

dicting the independence of 91. D 

1.3.12 Corollary. Let P be a projective space, and let H be a hyperplane of P. 
Then for any subspace U of P we have the following alternatives: 
- U is contained in H, or 
- dim(U n H) = dim(U) - 1. 

In particular we have the following assertion: any line that is not contained in H 
intersects H in precisely one point. 

Proof Let d = dim(P). Suppose that U is not contained in H. Then (U, H) is a 
subspace that contains H properly. It follows that (U, H) = P. Using the dimen­
sion formula we get 

dim(U n H) = dim(U) + dim(H) - dim( (U, H» 

= dim(U) + (d - 1) - d = dim(U) - 1. 

1.4 Quotient geometries 

D 

In many situations one has to study the 'local' structure of a geometry. In this 
book we feature two different local structures: the subspaces (or more generally, 
the objects of a geometry together with the induced incidence) and the quotients. 
In general, these local structures are geometries of smaller rank and therefore, at 
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least in principle, easier to handle. Often, one can deduce global properties by 
looking at these local structures. An example of a quotient is the set of all sub­
spaces passing through a fixed point. In this section we shall discuss quotients of 
projective geometries. Historically, this was one of the structures that led to the 
development of projective geometry. 

Definition. Let Q be a point of P. The rank 2 geometry P IQ whose points are 

the lines of P through Q, whose lines are the planes of P through Q, and whose 
incidence is the incidence induced by P is called the quotient geometry of Q. 
We also speak of 'P modulo the point Q'. 

We shall show that the quotient geometry is a projective space. This task requires 
us to 'identify' the quotient geometry with a suitable projective space; such an 
'identifying' will be formally described by the notion of an 'isomorphism'. 

Definition. Let G = (n, I) and G' = (n', 1') be rank 2 geometries; let g>, 9\ and 
0>', 9\' the sets of points and blocks of G and G'. We call G and G' isomor­
phic if there exists a map a: 0>u 9\---» g>' u 9\' with the following properties: 

- a maps g> onto g>' and 91 onto 91' and the restrictions of a to g> and to 91 
are bijections. 

- For all PEg> and all B E 91 the following equivalence is true: 

PI B <:::::> a(P)I' a(B). 

Such a map a is called an isomorphism from G onto G'. 

An automorphism is an isomorphism from a rank 2 geometry G onto itself. 

If the blocks G are called lines then an automorphism is often called a collinea­
tion. This applies in particular for projective spaces. 

1.4.1 Theorem. Let P be a d-dimensional projective space, and let Q be a 
point of P. Then the quotient geometry P IQ of P modulo Q is a projective 
space of dimension d - 1. 

Proof We shall show that P IQ is isomorphic to a hyperplane not through Q. 
First we shall show that such a hyperplane exists. 

By Lemma 1.3.8 one can extend Q to a basis {Q, Pj, Pz, ... , P d} of P. The 
subspace H = (Pj, Pz, ... , P d) is spanned by d independent points, hence H 
has dimension d - 1 and is therefore a hyperplane. Since the set {Q, PI> 
Pz, ... , P d} is independent, it follows that Q r;. H. 

Now we show that the geometry P IQ is isomorphic to any hyperplane H not 
through Q. In order to do this we define the map a from the points and lines of 
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P IQ onto the points and lines of H in the simplest possible way (see Figure 

1.7): 

a:gHgnH. 

a: n H n n H. 

Since the points of P IQ are the lines g of P through Q and since Q is not 
incident with H, g n H is a point of H. Similarly one argues for the lines of 

P/Q. 

We have to show that this map is bijective when restricted to the points and 

lines and preserves the incidence. 

Q 11 

Figure 1.7 P IQ is isomorphic to H 

a is injective: Let g and h be two distinct points of P IQ, that is, two dis­
tinct lines through Q. If g and h were to intersect H in the same point X then 

g and h would have the points Q and X in common. Since X E H, but 
Q ~ H, we have that X 7- Q; this is a contradiction. 

a is surjective: If X denotes a point of H then QX is a line through Q, 
hence a point of P IQ. 

Similarly one shows that a acts bijectively on the set of lines. 

a preserves incidence: Let g be a point and n a plane of P IQ. Then 

g <;;;; 1t <=> g n H <;;;; n n H <=> a(g) <;;;; a(n). 

Thus the theorem is proved completely. D 

As a corollary we note the following assertion. 

1.4.2 Corollary. Let P be a d-dimensional projective space. and let Q be a 

point of P. Then there is a hyperplane of P that does not pass through Q. D 
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1.5 Finite projective spaces 

In this section we shall determine the numbers of points, lines, and hyperplanes of 
finite projective spaces. For this. the following lemma is fundamental, although it 
holds in arbitrary, not necessarily finite, projective spaces. 

1.5.1 Lemma. Let gl and g2 be two lines of a projective space P. Then there 

exists a bijective map 

from the set (g I) of points on g I onto the set (g2) of points on g2' 

Proof W.Lo.g. we have gl 7- g2' 
Case 1. The lines g, and g2 intersect in a point S. 

Let PI be a point on g) and P2 a point on g2 such that PI 7- S 7- P2. By 
axiom 3 there is a third point P on the line P 1P2. By definition, P is neither on 

g) nor on g2' By axiom 2 any line through P that contains a point X 7- S of gl 
intersects the line g2 in a uniquely determined point <p(X) with <p(X) 7- S (see 
Figure 1.8). 

Figure 1.8 Bijective map of the points on gl onto the points of g2 

This means that the map <p defined by 

<p: XH XPn g2 

is a bijection from (g)\{S} onto (g2)\{S}, Trivially, this can be extended to a 

bijection <p from (g) onto (g2), by defining <p(S):= S. 

Case 2. The lines gl and g2 have no point in common. 
Let h be a line connecting some point of gl to some point of g2' By the first 

case, there are bijections 

<PI: (gl) ~ (h) and <P2: (h) ~ (g2)' 

Then <p := <P2 0 <PI is a bijective map from (gl) onto (g2)' D 



24 1 Synthetic geometry 

Definition. A projective space P is called finite if its point set is a finite set. (If 
dim(P) > 1 then P is finite if and only if the set of lines of P is finite; see exer­
cise 31.) 

If P is a finite projective space then, by 1.5.1, each line of P is incident with the 
same number of points. Therefore there exists a positive integer q such that each 

line of P is incident with precisely q + 1; in view of axiom 3 we have q ~ 2. 

The so defmed integer q is called the order of the finite projective space P. 
For a finite projective space P, its dimension d and its order q are the fun­

damental parameters. This can, for instance, be seen from the fact that all pa­

rameters of P (e.g. its numbers of points, lines, and hyperplanes) are functions of 
d and q. 

We shall compute some parameters of projective spaces. First we shall deter­
mine the order of the quotient geometry. 

1.5.2 Lemma. Let P be a finite projective space of dimension d ~ 2 and order 

q. Then for each point Q of P the quotient geometry P IQ has order q as 
well. 

Proof By 1.4.1, P IQ is isomorphic to H for any hyperplane H not through Q. 
In particular, P IQ is a projective space of order q. 0 

1.5.3 Theorem. Let P be a finite projective space of dimension d and order q, 

and let U be a I-dimensional subspace of P (1 ~ t ~ d). Then the follOWing as­

sertions are true: 

(a) The number of points of U is 

t + I 1 
qt + qt-l + ... + q + 1= q -

q-l 

In particular, P has exactly qd + ... + q + 1 points. 

(b) The number of lines of U through a fixed point of U equals 

qt-l+ ... +q+l. 

(c) The total number of lines of U equals 

( t t - I + q + 1). (qt - I + + q + 1) q + q + ... . .. 
q + 1 
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Proof We prove (a) and (b) simultaneously by induction on t. If t = 1 then (a) is 
nothing else than 1.5.1 together with the definition of the order of P. In this case 
(b) holds trivially, since U is a line. 

Suppose now that (a) and (b) are true for projective spaces of dimension t - 1 ~ 

l. We consider an arbitrary point Q of U. Since by 1.4.1 and 1.5.2 the quotient 
geometry U/Q is a (t-I)-dimensional projective space of order q, by induc­
tion, its number of points is qt - I + ... + q + I. Since, by definition of U I Q, this 

is the number oflines of U through Q, we have already shown (b). 

Since each of these lines carries exactly q points different from Q and since 
each point R"# Q of U is on exactly one of these lines (namely on QR) U 
contains exactly 

1 + (qt-l + ... + q + l)·q = qt + qt-l + ... + q + 1 

points. This shows (a). 

(c) Let b be the number of all lines of U. Since U has exactly qt + ... + q + 1 
points and any point of U is on exactly qt - I + ... + q + 1 lines of U, one could 
be tempted to think that (qt + ... + q + 1)·(qt-l + ... + q + 1) is the number of 

lines of U. But since any line has exactly q + 1 points it is counted exactly 
q + 1 times. Thus we get 

b= (l + ... +q+l)'(qt-l + ... +q+I). 

q+I 
o 

Definition. The numbers qt + ... + q + 1 are often denoted by ~ = etCq) 
(,theta'). 

1.5.4 Theorem. Let P be a finite projective space of dimension d and order q. 
Then 

(a) the number ofhyperplanes of P is exactly 

qd+ ... +q+l; 

(b) the number of hyperplanes of P through a fixed point P equals 

qd-l+ ... +q+l. 

Proof We show (a) by induction on d. For d = 1 the theorem says only that any 

line has q + 1 points, for d = 2 the assertion follows from 1.5.3. 

Suppose that the assertion is true for projective spaces of dimension d - 1 ~ 1. 
Consider a hyperplane H of P. By the dimension formula 1.3.11, every hyper­
plane different from H intersects H in a subspace of dimension d - 2. Thus, 
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any hyperplane *- H of P is spanned by a (d - 2)-dimensional subspace of H 

and a point outside H. 
For each (d - 2)-dimensional subspace U of H and each point PE P\H, the 

subspace (U, P) is a hyperplane, which contains exactly (qd- I + ... + 1) - (qd-

2 + ... + 1) = qd - I points outside H. Since there exist qd points of P outside 
H there are q hyperplanes *- H through U. By induction. there are exactly qd-

1 + ... + q + 1 hyperplanes of H, which are subspaces of dimension d - 1 of 
P. Thus, the total number of hyperplanes of P is q. (qd - I + ... + q + 1) + 1. 
(b) Let P be a point of P and H be a hyperplane not through P. Then any hy­
perplane of P through P intersects H in a hyperplane of H. Thus, by (a), there 
are exactly qd - I + ... + 1 such hyperplanes. 0 

1.5.5 Corollary. Let P be a finite projective plane. Then there exists an integer 

q 2: 2 such that any line of P has exactly q + 1 points. and P the total number 

ofpoints is q2 + q + 1. 0 

For instance, there is no projective plane having exactly 92, 93, ... , or 110 points. 
The question of which positive integers q can be the order of a finite projec­

tive plane is among the most discussed questions in finite geometry. Here are 
some facts. 

order q 2 3 4 5 6 7 8 9 10 11 12 

existence yes yes yes yes no yes yes yes no yes ? 

The fact that the 'yes' -entries are true will be proved in the next chapter. Although 
the question of existence is very interesting. we will not pursue it in great detail. 
We shall simply summarize what is known. 
I. The order of any known finite projective plane is a prime power, that is a posi­
tive integer of the form pe, where p is a prime and e 2: 1. 
2. The theorem of Bruck and Ryser [BrRy49] says the following: if q is a posi­
tive integer of the form q = 4n + 1 or q = 4n + 2 (n E N) and if there is a pro­
jective plane of order q then q is the sum of two square numbers, one of which 
might be O. From this one can in particular infer that there does not exist a projec­
tive plane whose order is q = 8n + 6 (n EN); so there does not exist a projective 

plane of order 6, 14, .... 
3. The only other integer q that has been excluded as the order of a projective 
plane is q = 10. This result has been obtained by methods which are in marked 
contrast to the methods used for the Bruck-Ryser theorem. While the Bruck­
Ryser theorem was proved using sophisticated ideas of number theory, the non-
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existence of a projective plane of order 10 was proved by massive computer 
power: just to exclude a certain configuration (a '12-arc') the computer program 
had to run for 183 days! (Cf. [Lam91].) 

The projective planes of order 4 and 5 are true gems and contain many beautiful 
geometric structures. Elementary treatments of these gems can be found in 
[Beu86], [Beu87], [Cox74]. 

1.6 Affine geometries 

When one learns for the first time of projective spaces one could perhaps think 
that these structures are of a purely theoretical nature, without any real meaning. 
One might believe that 'affine' geometry, where one has parallel lines, is much 
more natural. 

In this section we will show, however, that these structures are basically the 
same - distinguished only by different points of view. Why does one concentrate 
on projective geometry and not affine geometry? The reason is that projective 
geometries have 'homogeneous' properties and there is no need to distinguish 
many special cases, which is unavoidable when studying affine geometries. 

Definition. Let P be a projective space of dimension d 2: 2, and let Hex) be a 
hyperplane of P. We define the geometry A = P\Hex) as follows: 
- The points of A are the points of P that are not in Hex). 
- The lines of A are those lines of P that are not contained in Hex). 
- In general, the t-dimensional subs paces of A are those (-dimensional sub-
spaces of P that are not contained in Hex). 
- The incidence of A is induced by the incidence of P. 

The rank 2 geometry consisting of the points and lines of A is called an affine 
space of dimension d; we often also denote this rank 2 geometry by A = P \Hex). 
An affine space of dimension 2 is called an affine plane. 

The set of all subspaces of A is called an affine geometry. 
Finally, for a fixed integer t E {I, ... , d - I} we denote the rank 2 geometry 

consisting of the points and the t-dimensional subspaces of A by At. So an af­

fine space is the geometry AI' 

The subspaces of an affine space are often called flats. 
We call the hyperplane Hex) the hyperplane at infinity and the points of Hex) 

the points at infinity of A. Sometimes these points are also called 'improper' 
points. But this is only a convenient name and does not imply that there is some­
thing wrong with these points. 
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The projective space P is also called the projective closure of the affine space 

A. 

The essential difference between projective and affine geometries is that affine 

geometries have a natural parallelism. 

Definition. Let G = (g>, 93, I) be a rank 2 geometry. A parallelism of G is an 

equivalence relation lion the block set ffi satisfying the following parallel axiom: 

If PEg> is a point and B E 93 is a block of G. then there is precisely one 

block C E 93 through P such that C 11 B. 

The blocks B and C are called parallel if g 11 h holds. 

1.6.1 Theorem. For t E {I, ... , d - 1}, the geometry At has a parallelism. 

Proof Let P be the projective space belonging to A, and let H<X) be the hyper­
plane at infinity. Consider two I-dimensional subspaces U, W of A. By defini­
tion, these are I-dimensional subspaces of P that are not contained in H<X). By 
1.3.12, Un H<X) and W n H<X) are subspaces of dimension t - 1 of H<X). We 

define 

UIIW :<=> Un H<X) = W n H<X) 

and shall show that 11 is a parallelism. It is clear that 11 is an equivalence relation, 
since it is defined via an equality relation. 

Now we shall show the parallel axiom. Let U be at-dimensional subspace of 
A, and let P be a point of A. We denote the (t-I)-dimensional subspace 
Un H<X) of H<X) by V. 

We see that any I-dimensional subspace W through P that is parallel to U 
must contain P and V. Since (V, P) is already a {-dimensional subspace of P 

which is contained in W it follows by 1.3.9 that W = (V, P). Thus we have 
proved the existence as well as the uniqueness of a parallel to U through P. 0 

Remark. We call the parallelism constructed in 1.6.1 the natural parallelism of 
A. (This name indicates of course that there might also exist nonnatural parallel­

isms.) 
For the natural parallelism we have that any two distinct, parallel t­

dimensional subspaces of A span a subspace of dimension t + 1. 
We call two subspaces of arbitrary dimension parallel if one is parallel to a 

subspace ofthe other. This means: if H<X) denotes the hyperplane at infinity of P 
then the subspaces U and W are parallel if and only if we have either U n H<X) 
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<;;;;; W n H<X) or W n H<X) <;;;;; U n H<X). In particular we say that a line g of A is 
parallel to a hyperplane H if g is parallel to some line h of H; this means that 
g intersects H in a point at infinity. 

1.6.2 Lemma. Let A = P\H<X), where P is a d-dimensional projective space and 
H<X) is the hyperplane at trifinity of A 

(a) Each line that is not parallel to a hyperplane H intersects H in precisely 
one point of A. 
(b) If d = 2 then any two non parallel lines intersect in a point of A. 

Proof (a) Let g be a line and H a hyperplane of A that are not paralleL Then 

g intersects H<X) in a point outside H n H<X). By 1.3.12, g and H intersect in 
some point of P; since they don't meet in H<X) they have a point of A in com­
mon. 
(b) follows trivially from (a). 

1.6.3 Corollary. Any affine plane A has the follOWing properties: 
(1) Through any two distinct points there is exactly one line. 

o 

(2) (Playfair's parallel axiom) If g is a line and P a point outside g then 
there is precisely one line through P that has no point in common with g. 

(3) There exist three points that are not on a common line. 

Proof Let A = P\g<X), where P is a projective plane and ~ is the line at infin­
ityof A. 

(1) By axiom 1 any two points of P, in particular any two points of A, lie on 
precisely one line. 

(2) follows by 1.6.1 and 1.6.2. 
(3) By axiom 3 g<X) has at least three points. Through any point P of P outside 

g<X) there are at least three lines gi' These have, apart from P, another point Pi in 
A (t = 1,2,3). Hence P, P], P2 are three noncollinear points of A. 0 

1.6.4 Theorem. Let S = (g>, §, I) be a geometry that satisfies the conditions (l), 
(2), and (3) of1.6.3. Then S is an affine plane. 

Proof We have to show that there are a projective plane P and a line g<X) of P 

such that S = P\g<X). 
For this we have to extend S by additional points ('points at infinity') and by 

a 'line at infinity'. The essential tool for this is the parallel classes. 

We define a relation lion the set oflines of S by 

gllh :<=> g = h or (g) n Ch) = 0. 
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Step 1. 11 is a parallelism. 
For this we show first that 11 is an equivalence relation: reflexivity and symme­

try of 11 follow directly from the definition. In order to show that 11 is transitive let 

g, h, and k be lines with g 11 h and h 11 k. If g and k are disjoint then they are 
paralleL Hence let g and k have a point P in common. Then we see that P is 
on two distinct lines, namely g and k, which are both parallel to h. By Play­

fair's parallel axiom (applied to P and h) we have g = k, and so in particular g 11 

k. 
By Playfair's parallel axiom it follows that 11 is a parallelism. 

By definition of 11 and in view of (l ) we alsohave 
Step 2. Any two non parallel lines intersect each other in (precisely) one point. 

Since 11 is an equivalence relation we may consider the corresponding equiva­
lence classes; we call them parallel classes. A parallel class consists of a set of 
disjoint lines; in view of Play fair's parallel axiom any point of S is on (precisely) 

one line of each parallel class. 
Now we regard any parallel class IT as a 'new' point. (Behind this there is the 

intuitive idea that 'parallel lines meet at infinity'.) Furthermore, we collect all new 
points into a new line gCf). 

More precisely we define the geometry P as follows. 

- The points of P are the points of S and the parallel classes of S. 
- The lines of P are the lines of S and one further line gCf). 
- The incidence 1* of P is defined as follows: 

P 1* g:<=:> Pig 

P 1* gCf) 

IT 1* g:<=:> g E IT 

IT 1* gCf) 

Step 3. P is a projective plane. 

for P E !Jl and g E ~, 

for no point P E !Jl, 

for any parallel class IT and all g E ~, 

for any parallel class IT. 

For this we show that axioms 1,2', and 3' (see exercise 7) hold. 

Axiom 1. Any two points of S are joined by a line of S and by no other line 
since gCf) has only new points. Let P be a point of S and let IT be a parallel 
class. If g denotes the line of IT through P then in P the line g is incident 
with P and IT. Since by definition any line of IT is incident with IT, g is the 

only line incident with IT and P. 
Axiom 2'. The line at infinity intersects any line g of S, precisely in the paral­

lel class containing g. By Step 2, any two nonparallel lines of S intersect each 
other in a point of S, and any two parallel lines of S are incident with a common 
point of P, namely with the parallel class containing them. 
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Axiom 3'. By (3) there are three points Po, PI, and P2 of S that are not on a 
common line. Let ITI and IT2 be the parallel classes of S containing POPI and 
POP2. Then {Pj, P2, IT], IT2} is a quadrangle of P, that is a set of four points no 

three of which are on a common line. 
Thus we have proved Step 3. 
Since, by construction, S = P\gCf), S is an affine plane with gCf) as line at in-

~~ 0 

Theorem 1.6.4 says that the Euclidean plane, which we all know and love, is an 

affine plane. This also means that projective planes are not so unfamiliar to us as it 
may seem at first glance. The smallest affine planes (having four and nine points) 

are shown in Figure 1.9. 

Figure 1.9 The affine planes with four and nine points 

Definition. Let P be a finite projective space of order q, and let H be a hyper­
plane of P. We then say that the affine space A = P\H also has order q. 

1.6.5 Theorem. Let A be a finite d-dimensional affine space of order q. 

(a) There exists a positive integer q ~ 2 such that any line of A is incident with 

exactly q points. 
(b) If U denotes at-dimensional subspace (1 :::; t :::; d) of A then U has pre­

Cisely qt points. 

Proof Let P be the projective space belonging to A, and let HCf) be the hyper­

plane at infinity of A. 
(a) We consider an arbitrary line g of A, and let q be its number of points (in 

A). Then g has - considered as a line of P - exactly q + I points. Hence P has 

order q. Therefore any line of A has exactly q points of A. 
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(b) Any t-dimensional subspace U of A intersects - when considered as a sub­
space of P - the hyperp\ane at infinity III a (t - 1 )-dimensional subspace 
U n Hao. Thus we have 

number of points of A in U 

= number of points of U in P - number of points in U n HO() 

= qt + ... + q + 1 - (qt~ I + ... + q + 1) = qt. o 

1.6.6 Corollary. Let A be ajinite affine plane. Then there exists an integer q ~ 2 
such that any line of A is incident with exactly q points, and the total number of 
M~ifA~~ 0 

This implies for instance that there is no affine plane having 10001 (= 1002 + 1), 

10002, ... , or 10200 (= 10 12 - 1) points. 

1.6.7 Theorem. Let S be a geometry having the following properties: 
(a) Any two distinct points of S are incident with exactly one common line. 
(b) There exists an integer q ~ 2 such that the total number of points of S is q2. 

(c) Each line of S has exactly q points. 
Then S is an affine plane. 

Proof We shall show that S fulfils the conditions (1), (2), and (3) of 1.6.3. Then 
1.6.4 implies that A is an affine plane. Since (1) and (a) are identical, and (3) 
follows from the fact that S has at least two lines (note that q2 > q), each of 
which has at least two points, we have to show only (2). 

For this we show first that any point P of S is on exactly q + 1 lines: Let r 

be the number of lines through P. Then the q2 - 1 points -:t= P are distributed 
among the r lines through P in such a way that any of these r lines contains 
exactly q - 1 of the q2 - 1 points. Hence r = (q2 - 1)/(q - 1) = q + 1. 

Now we consider a nonincident point-line pair (P, g). Since g has exactly q 

points, the point P is joined to the points of g by q lines in total. Hence there 
remains just one line through P that has no point in common with g. 0 

1. 7 Diagrams 

The aim of this section is to unify into a coherent theory the results on projective 
and affine spaces developed in the previous sections. Our new point of view is 
provided by the 'diagram geometries'. We shall present a method to describe a 
geometry (in the sense of Section 1.1) very economically and effectively. This 
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will be done by the so-called diagrams. The theory of diagrams has recently un­
dergone an explosive growth. It all began with a seminal paper [Tits74] by Jaques 
Tits (born 1930). The theory was provided with its first systematic treatment by 
Francis Buekenhout (born 1937) in [Buek79], [Buek81]; there are already books 
devoted to diagrams, for instance [Pas94]. For the foundations of diagram geome­
try see [BuBu88]. 

This section provides an important insight into a current area of research. We 
shall describe the diagrams for projective and affine spaces, and shall describe 
how to read a diagram and how to go from a geometry to its diagram. You should 
try to understand at least the fundamental ideas. 

The main idea is that one introduces a symbolic notation for the most important 
rank 2 geometries, and tries to describe the whole geometry using these symbols. 

Defmition. Figure 1.10 presents the projective and the affine planes . 

•• ---.. projective plane 

aff 
•• ---.. affine plane 

Figure 1.10 Diagrams for projective and affine planes 

Here is how to interpret these little pictures. The left-hand node is a symbol for the 
points, and the right-hand node represents the lines of a projective or an affine 
plane. At this point it is not yet obvious why diagrams are more than just another 
symbolism for an already known structure, but this will soon become clear. 

The description for an affine plane by this symbol is merely an abbreviation for 
its definition. For geometries of higher rank it is much more: the corresponding 
diagrams provide a 'code' for a great many nontrivial geometrical properties. First 
let us restrict ourselves to the 3-dimensional case. The diagram of a 3-dimensional 
projective space is as follows: 

• • • 
How should we read this? We shall try to understand this diagram intuitively to 
prepare us for the formal definition. 

Any diagram consists of nodes and edges. The nodes are easy: any geometry 
that has a diagram is a rank r geometry, hence a geometry with r different types 
of objects in which any maximal flag contains one object of each type. The nodes 
of a diagram are chosen in such a way that each type of the geometry corresponds 
to one node. In particular, there are exactly r nodes. In our case we have a rank 3 
geometry. 
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The edges are obviously more difficult to explain, since the edges must de­
scribe the structure of the geometry. Roughly speaking, the edge joining two 
nodes describes the structure of the corresponding objects inside the whole ge­
ometry. In order to see this in our diagram we assign the traditional names to the 
objects of the different types: 

• • • 
points lines planes 

Our diagram is composed oftwo 'elementary diagrams', each of which represents 
a projective plane: the symbol 

• • 
points lines 

means that the points and lines of any plane form a projective plane. (This is in 
fact true: any plane of a projective space is a projective plane.) 

The right-hand side of the diagram 

• • 
lines planes 

means that the lines and planes through any point form a projective plane. (This is 
also true, since by 1.4.1 the quotient geometry modulo any point is a projective 
plane.) 

Now we can read the diagram 

• • • 
much better: a geometry belonging to this diagram is a rank 3 geometry with the 
property that the structure of points and lines in any plane is a projective plane and 
that the structure of lines and planes through any point is also a projective plane. 

Before defining a diagram geometry in general we shall consider the diagram 
of a 3-dimensional affine space. Since this geometry has rank 3 we need three 
nodes, one for the points, one for the lines, and one for the planes. 

In order to determine the edge between the first two nodes we must know the 

structure of the set of points and lines in a plane. By 1.6.4, this is an affine plane. 
In order to describe the edge between the last two nodes we must know the struc­
ture of lines and planes through a point. It is easy to show that this is a projective 
plane (see exercise 36). Thus, the diagram belonging to a 3-dimensional affine 

space looks as follows: 

• aff • • 
Now we describe in general how one gets the diagram of a geometry. Here, the 
crucial notion is the 'residue ofa flag'. 
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Definition. Let G = (Q, I) be a geometry, and let ~ be a flag of G. The residue 
of J is the geometry ResO) = (Q', 1') whose elements are those elements of G 
that are not contained in the flag :f but are incident with each element of ~; the 
incidence l' is induced by I. 

We shall consider the residue only if the geometry is a rank r geometry. For 
those geometries the residues can be described as follows: 

Let J be a flag of a rank r geometry G. The residue of ~ is the set ResO) 
of those elements of G that are incident with any element of J but whose type 
does not show up in :J. In order to determine the residue of a flag one can there­
fore proceed as follows. First one determines the types of the elements in :J and 
looks for all the elements in G that are incident with all elements in :J but do not 
have a type occurring in :f. 

Obviously ResO) is a geometry; if :f has s elements and G is a rank r 
geometry then ResO) is a geometry of rank r - s. 

Examples. Let G be the geometry consisting of all nontrivial subspaces of a d-di­
mensional projective space (d~ 3). 

First, let J consist of only one element. If :f consists only of a hyperplane H 
then Res(J) is the set of all subspaces incident with H. We know that this is a 
projective space of dimension d - 1. 

If J consists only of one point P then Res(~) is the set of all lines, planes, 
... , hyperplanes through P. By 1.4.1 this structure is a projective space of dimen­
sion d-l. 

If J consists of a line g then the elements of Res(:f) are the points on g and 
the planes, ... that pass through g. 

If J = {P, g} with PIg then ResO) consists of the planes, 3-dimensional 
subspaces, ... through P and g. By Theorem 1.4.1 (see also exercise 34), Reset) 
is a (d - 2)-dimensional projective space. 

For the defmition of a diagram we consider only residues of flags ~ having ex­
actly r - 2 elements; in this case there are integers i and j such that :5 contains 

an element of any type '* i,j. By definition, ResGf) consists of elements of just 
two types, namely i and j. In particular, ResO) is a rank 2 geometry. In this 
case we shall also say that Res(:f) is a rank 2 residue. 

Now we are ready to define the diagram of a rank r geometry. To each type of 
objects we assign one node. The edge between two nodes i and j describes the 
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rank 2 geometry that is the residue of all flags consisting of r - 2 elements none 
of which is oftype i or j. 

In principle one can invent for each class of rank 2 geometries a special symbol 
and label the corresponding edge with this symbol. In this way we can describe all 
geometries of rank r. 

Remark. In a geometry that belongs to a certain diagram, the rank 2 residues of a 
certain type need not be isomorphic. Let us consider, for instance, the following 
diagram: 

• L • • 
This means in particular that the residue of any plane is a 'linear space', that is a 
geometry in which any two distinct points are on exactly one common line. (ef. 
Section 2.8.) The residue of one plane could be a projective plane, the residue of 
another plane could be an affine plane, etc. 

In geometric research the following question has proved extremely stimulating. 
Draw r nodes and between the nodes any symbols for rank 2 geometries. Thus 
one obtains a hypothetical 'molecule'. Question: can one 'synthesize' a corre­
sponding geometry, and can one describe all geometries belonging to that diagram 
in a satisfactory way? We have so far introduced only three symbols, namely 
'projective plane', 'affine plane', and 'linear space'. This is sufficient for our pur­
poses. The reader who wants to know more about these topics should look up the 
papers of Buekenhout or the book by Pasini. 

We repeat: between any two nodes there is an edge. But the above diagrams for 
3-dimensional spaces did not show an edge between the node representing the 
points and the node representing the planes. Which is the corresponding geome­
try? It is the residue of a line g, which consists of all points on g and all planes 
through g. This is a rank 2 geometry with the property that any element of one 
type is incident with any element of the other type. Such rank 2 geometries are 
called trivial. Therefore we also have to introduce a diagram for the trivial rank 2 
geometries. The diagram of a 3-dimensional projective space should really look as 
follows: 

trivial 

• 
On the other hand, this looks very strange and would lead to complete confusion 
when dealing with higher-dimensional geometries so we agree that a trivial rank 2 
geometry is represented by an invisible edge. 
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One also calls a geometry that can be described by a diagram a Buekenhout­
Tits geometry. 

We now discuss the diagrams for d-dimensional projective and affine geometries. 
Both are geometries of rank d, so we need d nodes. The diagram for projective 
spaces looks as follows: 

•• I----..... ---~ ...... --------. • 

points lines planes (d - 2)-dim. hyperplanes 
subspaces 

How can we read such a diagram? 
The 'strokes' indicate that some rank 2 residues are projective planes. Which 

are those residues? For the first 'stroke' we have to consider the residue of a flag 
consisting of a plane It, a 3-dimensional subspace, ... and a hyperplane. By defi­
nition, this residue consists of all points and lines of It, and we know that this is in 
fact a projective plane. 

What is the meaning of the second 'stroke' between the node for lines and the 
node for planes? Let us consider a corresponding residue, which consists of a 
point P, a 3-dimensional subspace U and higher-dimensional subspaces. Such a 
residue contains all lines and planes through P that lie in U. In other words: this 
residue is the quotient geometry V lP, which, by 1.4.1, is a projective plane. 

Here, we can already see the general scheme: the 'stroke' between node i and 
node i + 1 indicates the set of i- and (i + 1 )-dimensional subspaces through a 
subspace Vi _ I of dimension i-I and contained in a subspace Vi + 2 of di­
mension i + 2, where Vi _ I ~ Vi + 2· This is the quotient geometry U i + 21 Vi _ ), 

which is a projective plane. 
All other rank 2 residues are trivial. Let us consider an example. Let ~f be a 

flag that contains an element of each type except for a point and a plane. Let g be 
the line in ~. Then ResGf) consists of all points on g and all planes through g; 
this residue is in fact trivial. 

But there is yet further information coded in our diagrams. What is the residue 
of a hyperplane? In order to see this, you only have to cover with your finger the 
node belonging to the hyperplanes, and look at the remaining diagram. We see 

.. -----~.~---..... ------------
points lines planes (d - 2)-dim. 

subspaces 

We recognize the diagram of a projective space of dimension d - 1. We know that 
this is the geometry induced by a hyperplane. 

To sum up: In order to determine the residue of a flag :f one deletes the nodes 
corresponding to the types showing up in :f and all edges incident with these 
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nodes. Then Res(:f) is a Buekenhout-Tits geometry corresponding to the flag 
considered. 

Now we study the diagram of a d-dimensional affine space. It has d nodes and 
looks as follows: 

aff .. ~----~ . .-------.-----------~ . .-------. 
points lines planes {d - 2)-dim. hyperplanes 

subspaces 

There is only one place in this diagram that differs from the diagram of a projec­
tive geometry. The residue of a flag consisting of a plane, a 3-dimensional sub­
space, . .. is an affine plane, while all other 'visible' rank 2 residues are projec­

tive planes. This shows in a spectacular way the structural kinship of affine and 
projective spaces. 

So far we have seen that projective and affine spaces have diagrams. But the con­
verse is also true, and only this justifies the claim that the diagram describes the 

geometry. In order to formulate the respective theorems we need the notion of a 
'connected geometry'. 

Definition. A geometry G = (0, I) is called connected if for any two elements 

X, Y E 0 there is a sequence X = Xo, X I, X2, ... , Xn = Y of elements of 0 

such that Xi is incident with Xi + I (i = 0, 1, ... , n - 1). 

For instance each projective or affine geometry is connected. If, for example, g 

and h are two lines then there is a sequence as required in the definition: If g 
and h intersect each other in a point P then (g, P, h) is such a sequence. If g 

and h have no point in common then one chooses a point P on g and a point Q 
on h; then (g, P, PQ, Q, h) is a sequence that shows that g and h are con­

nected. 

1. 7.1 Theorem. Each connected geometry with diagram 

.. ~------.------~ . .-----------~.~------. 
o 2 d-2 d-J 

is a d-dimensional projective space. 

Proof Let G be a rank d geometry with the above diagram. We shall show by 
induction on d that the sets of points and lines of G fulfil the axioms of a pro­

jective space. For d = 2 this is precisely the definition of the diagram. We sup­
pose therefore that d> 2 and assume that the assertion is true for d - 1. 
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Axiom I. Let P and Q be two distinct points. We have to show that there exists 
precisely one line through P and Q. 

The most difficult part is the existence of a connecting line: Since G is con­

nected there is a sequence (X J, X2, ... , Xn) of elements of G such that P is 
incident with Xl, Q is incident with Xm and two consecutive elements have a 
point in common. Let (XI> X2, ... , Xn) be such a sequence with a minimum 
number of elements. We first show that n = 1. Assume that n > 1. Let RI be a 

point incident with Xl and X2, and let R2 be a point incident with X2 and X3; 

if n = 2 then define R2 = Q. The element Xl has a type i with I::; i ::; d - I. 

We consider a flag :f = {Yj = Xl, Y j + 1, .... Y d _ I}' where the index of Y j de­
notes its type. We see that ResGf) is a rank i geometry with the following dia­
gram: 

•• ------~.~----~ • .---------__e 
o 2 i-I 

Since i < d we may apply induction. It follows that Res(:f) is a projective ge­

ometry of rank i containing the points P and R2. Since the points P and R2 

are joined in the projective space ResCf) by a line, they are also joined in G by 

a line g. Thus we could shorten the sequence (Xj, Xl>' .. , Xn) to obtain (g, 
X3, ... , Xn), a contradiction. 

Therefore we have P I X I Q, where X is an element of some type i. We have 

to show that i = I. In order to do this we again consider the residue ResCf) of a 

flag :f = {X = Y i , ... , Y d _ d. This is a geometry of rank < d that contains the 
points P and Q. By induction, Res(:f) is a projective space. Hence P and Q 

are connected in ResCf) by a line, therefore they are also joined in G by a line. 
The uniqueness of the line through P and Q is easier to prove: Assume that 

there exist two lines g, h through P and Q. The residue Res(P) of P is a ge­
ometry having the diagram 

.. ~------.-----------~.~------. 
2 d-2 d-J 

of rank d - 1. By induction, it is a projective geometry of dimension d - 1. Hence 

the lines g and h (which are points of Res(P» are contained in precisely one 
plane (line of Res(P». Since the geometry of points and lines incident "With a 
plane is a projective plane, the lines g and h cannot intersect in two distinct 
points. 

Axiom 2 is easy to prove. Let g and h be two lines that intersect in some point 
P. We have to show that any two lines g' and h' that both meet g and h in 
points "# P intersect each other. 
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Since g and h pass through P and since the residue of P is a projective ge­
ometry there is a plane 'IT containing g and h. Now we show that g' and h' 
also lie in 'IT: Let P' and Q' be the intersections of g' with g and h. If g' were 
not a line of 'IT then there would exist a second line g" (of 'IT) through P' and 
Q', contradicting axiom 1. 

Hence g' and h' are contained in the projective plane 'IT and therefore inter­

sect. 

The other axioms follow easily. 
The projective geometry has dimension d since the maximal flags have d 

elements. o 

Remarks. 1. In order to prove axiom we have only used that the residues of a 

point and a plane have the property that any two points are joined by exactly one 
line. Hence axiom 1 holds in a very large class of diagram geometries. 
2. In order to prove axiom 2 also we used only a weak property, namely that the 
residue of any point P has the property that any two lines through P lie in a 

common plane, and that the residue of any plane is a projective plane. 
3. The theorem remains true if one does not claim that G is connected; see exer­
cise 46. 

Similarly we get the following theorem for affine spaces. 

1.7.2 Theorem. Each geometry of rank d with diagram 
aff •• -------.e-----~ • ._----------~.~----_e. 

o 2 d~2 d~l 

that contains a line with at least four points is a d-dimensional affine space. 

Proof The property that any two points are on a unique line is shown in the above 

proof. 
Since any plane is an affine plane it follows from a rather deep theorem of 

Buekenhout ([Buek69b], see also [KaPi70]) that the geometry belonging to this 

diagram is in fact an affine space. 0 

1.8 Application: efficient communication 

Before defining the problem in general we consider an example. We imagine that 
eight students form a study group in order to do their homework economically: 
each solves part of the exercises and copies the rest from the others. We imagine 
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moreover that the students do their part of the homework at home and that the 
solutions are communicated by telephone. 

They agree that the solutions must be exchanged at a certain time, let's say one 
hour before they have to hand in a complete set of exercises to the University. 
How should they proceed? One possibility is that all phone one another; then each 
one has to partake in seven phone calls, and clearly the telephone lines will be 
occupied constantly. Another possibility is that one of the students is the commu­

nication centre. Then this student receives seven phone calls, collects the solutions 
and has to phone back at least six of his colleagues. Also this procedure has the 
disadvantage that it takes a very long time until every participant has the complete 
information, and also it has a very unpractical central structure. 

A much better solution is the following. We represent the eight students by the 
eight vertices of a cube (see Figure 1.11). 

:.e--_~ .. 7 

2 

5 

o 
Figure 1.11 The cube as a model for efficient communication 

The students agree upon a precise communication strategy: First, those students 
who are connected by a vertical edge exchange their solutions (so, 0 and 2, 1 and 
3,4 and 6, and 5 and 7 communicate). Then those students who are connected by 
a horizontal left-right edge talk to each other (so 0 and 1,2 and 3, 4 and 5 and 6 

and 7 communicate). In this step they exchange both the solutions they know so 
far. For instance, 2 already has the solution of 0, therefore he also reports that so­
lution to 3. Thus, after the second phone call, 3 knows all solutions of 0, 1,2 (and 

3). Similarly, 7 (as well as 4, 5, and 6) knows all solutions of 4, 5, 6, and 7. 
Finally, there is a last round of phone calls; they use the third dimension, that is 

o and 4, 1 and 5, 2 and 6, and 3 and 7 talk to each other. It is clear that now each 
student knows all solutions. 

Note that each student has to make only three phone calls and that the total 
number 8·3/2 = 12 of phone calls is remarkably small. 

In general, N nodes would like to exchange information in such a way that all 
information eventually reaches every node. An algorithm for the nodes to ex­
change information among themselves is as follows: Let q be a positive integer 
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such that there exist projective spaces of any dimension of order q. (The next 
chapter will show that for q we can. for instance, choose any prime.) Then one 
determines the positive integer d in such a way that it satisfies 

qd-I <N<::;.qd. 

We will realize the algorithm using the affine space A = P\Hoo, where P is a d­

dimensional projective space of order q and Hoo is its hyperplane at infinity. By 

the choice of d we may identifY the communication nodes with points of A. For 
the sake of simplicity we suppose that each point of A represents a node. 

Let Hoo be the hyperplane at infinity of A. The trick consists simply of con­

sidering a basis {PI,"" P d} of Hoo. The algorithm works in d rounds: 
1 sf round. Each node X sends its information to any point of A that is on the 

line SP I' Then each point evaluates the received information and is ready for the 
second round. 
ith round (2 <::;. i <::;. d). Each point Q of A sends the information it has received 
and evaluated so far to each point of A that is on the line QP j • Then it evaluates 
the received data and is ready for the next step. 

1.8.1 Theorem ([Beu90b]). After d rounds. any point of A knows the total in­

formation. The total number of transactions is 

d·(q _l).qd = (q - I)·d·N <::;. c ·logq(N) oN. 

Proof We consider a point X of A and trace which nodes have, after i rounds, 
received the information of X. 

After the first round any affine point (that is any node) on the line XP I knows 

the information of X. In the second round any affine point Y on XP 1 sends the 
information of X (perhaps in another form) to the points on the line YP2. By 
Theorem 1.3.1 in such a way all points on the plane (X, PI> P2) will be reached. 

And so it goes. After round i all nodes in the subspace (X, PI, P2> ... , Pi) 

know the information of X. In particular, after round d, the information of X is 
known in the subspace (X, PI> P2, ... , P d); since this is the whole space any node 
knows the information of X. Since X was arbitrarily chosen, the first assertion is 

proved. 
In any round, each of the qd nodes sends exactly q - 1 messages; so in d 

rounds we have exactly d·(q - l)·qd transactions. 0 
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Exercises 

1 A tiling of the Euclidean plane consists of a set of polygons (regions of the 
plane that are bounded by straight line segments) with the following proper­
ties: 

2 

3 

- any point of the plane is in the interior or on the boundary of at least one of 
the polygons, 

- no point is in the interior of more than one polygon. 
See Figure 1.12. 

(a) Let n be the set of 'vertices', 'edges', and polygons ofa tiling. Then n, 
together with set-theoretical inclusion is a geometry. 
(b) Is this a geometry of rank r? If yes, what is r? 

(c) We get another geometry if we define two elements of n to be incident 
if their intersection is not empty. Is this in any case a rank r geometry? 

Figure 1.12 Three tilings 

Let G be a finite rank 2 geometry having v points, b blocks, a constant 
number r of blocks per point, and a constant number k of points per block. 
Show that 

v·r = b·k. 

A tiling is called regular if there is a positive integer n such that any poly­
gon is a regular n-gon, and if any two distinct edges intersect at most in a 
vertex. Determine all regular tilings. 
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4 Interpret the following picture as a projective plane: 

5 Construct a projective plane having exactly 13 points. [It is useful to compute 
first the number of points on a line.] 

6 Check whether the follmving rank 2 geometry is a projective space: 
Points: 1,2,3,4,5,6, 7,8,9, A, B, C, D, E, F. 
Lines: 123, 145, 167, 189, lAB, lCD, lEF, 246, 257, 28A, 29B, 2CE, 2DF, 

347, 356, 38B, 39A, 3CF, 3DE, 48C, 49D, 4AE, 4BF, 58D, 59C, 5AF, 5BE, 
68E, 69F, 6AC, 6BD, 78F, 79E, 7AD, 7BC. 
If this is a projective space, what is its dimension and what is its order? 

[Hint: Determine the planes.] 

7 Show that a rank 2 geometry S of points and lines is a projective plane if and 
only if it satisfies the axioms 1, 2', and 3': 

Axiom 3'. There exists a quadrangle, that is a set offour points no three of 
which are on a common line. 

8 Let X and Y be subsets of the point set of a projective space P. Prove the 
following assertions: 

(a) X~Y => (X)~(Y>, 
(b) «X» = (X), 
(c) (X, Y) = «X), Y). 

9 Show that each plane of a projective space is a projective plane. 

10 Let P be a projective plane such that any line has exactly five points. Show 

that any point of P is on exactly five lines and that P has a total of 21 

points and 21 lines. 

11 Try to construct a projective plane described in the preceding exercise in the 

following way: 
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- Points are the numbers 1,2, ... ,21. 

- The lines are constructed one after the other, beginning with the lines 
through point 1, by taking at each step the point with the smallest number that 
is not yet forbidden. 

12 Similarly, construct a projective space with 15 points, and three points on any 
line. 

[Hint: Cf. exercise 6.] 

13 Formulate the algorithm of exercise 11 as a recursive procedure that depends 

on n and determine the next projective plane that can be constructed using 
this procedure. 

14 Let U be a subspace of a projective space P, and let P be a point of P that 
is not contained in U. Show that for any point Q of U the span (U, P) of 

U and P consists precisely of the points in the planes (g, P), where g runs 
over all lines of U through Q (see Figure 1.13). 

p 

Figure 1.13 The span of U and P 

15 Let g I, g2 be two skew lines of a projective space P. Let Xl, Y I be points 

on g], X2, Y2 be points on g2' Furthermore, let X be a point on X 1X2 and 

Y be a point on Y I Y 2 such that XY is skew to gland g2 (see Figure 
1.14). 

Using only 1.3.1 show that each point Z on XY is on some line 
(transversal) that intersects gl and g2' 

[Hint: Show that the line g2 intersects the plane 11: := (g], Z).] 
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~z 

Figure 1.14 The transversal through Z 

16 ('Join theorem') Let U and V be nonempty subspaces of P. Then the span 
(U, V) can be described as follows: 

(U, V)=U {(PQ)IP E U,QEV,P;t:Q}. 

[Hint: Use the previous exercise.] 

17 Let D be a rank 2 geometry consisting of points and lines such that any two 
distinct points are on exactly one common line. Then one can define sub­
spaces. Prove the following statement: if for every subspace U and each 
point P outside U we have 

(U, P) = U {(PQ) I Q E U} 

then D satisfies the Veblen-Young axiom. [Cf. Theorem 1.3.1.) 

18 Show: if U is a subspace of a projective space and if g is a line that inter­
sects U in just one point then there is a hyperplane through U that does not 
contain g. 

19 What are the dimensions of the following subspaces: the empty set, a point, a 

line, a plane, a hyperplane, the whole space? 

20 Show that a set 9.\ of points of a projective space is a basis if and only if it is 
a maximal independent set. 

21 Generalize 1.3.5 to arbitrarily many subsets 93 1, ..• , 93s of an independent 
set 9.\. 

22 A generalized projective space is a rank 2 geometry satisfying the axioms 1, 
2, and 3": 
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Axiom 3". Every line has at least two points. 

Clearly, an ordinary projective space is a generalized projective space, but a 
generalized projective space might have lines with just two points. 

Let P" Pb ... be projective spaces with disjoint point sets. Define the ge­
ometry P as follows: 

the points of P are all the points of P), P2, ... : 

the lines of P are all the lines of PI> P2 .... and the point sets {Po Q}, 
where P and Q are points in different Pis. 

Show that P is a generalized projective space. 
P is called the direct product of the projective spaces Plo P2, .... 

23 Show that any generalized projective space is a direct product of ordinary 
projective spaces. 

24 Show that the set of all nontrivial subspaces of a d-dimensional projective or 
affine space is a geometry of rank d. 

25 Let P be a d-dimensional projective space. 
(a) Show: if Hj, ... , Hs are hyperplanes then 

dim(H) (l ... (l Hs) ~ d - s. 

(b) Prove that at-dimensional subspace cannot be represented as the inter­
section of fewer than d - t hyperplanes. 

26 Let D be an affine or projective space, and let a be a bijective map of the 
point set of D onto itself. Show that a can be extended to a collineation of 
D if and only iffor any three points P. Q, R of D we have 

P, Q, R are collinear <=;> a(P), a(Q), a(R) are collinear. 

27 Let D = (g>, §, I) be an affine or projective space. We define the rank 2 ge­
ometry (D) by (D):= (g>, {(g) I g E §}, E). Show that D and (D) are iso­
morphic. 
This means that everybody who has solved this exercise may w.l.o.g. suppose 
that the incidence relation of a projective or affine space is E. 

28 Consider real 3-dimensional affine space (intuitive geometry) and fix the ori­
gin O. Convince yourself that the following geometries are isomorphic: 
(a) Points: lines through O. Lines: planes through O. 
(b) Points: pairs of antipodal points on the unit sphere. Lines: great circles on 
the unit sphere. 
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29 Show that the geometries considered in the preceding exercise are projective 
planes. 

30 Convince yourself that the following diagram also represents an affine plane 
of order 3: 

31 Show that a projective space of dimension > I is finite if and only if its set 
of lines is finite. 

32 Let P be a finite d-dimensional projective space of order q (d ~ 2). 
(a) Compute the number of all planes through a point. 
(b) Compute the number of all planes of P. 

33 Compute the number of all I-dimensional subspaces of a finite projective 
space. 

34 Define the quotient geometry Pig of P modulo a line g. Prove a theorem 
that is similar to 1.4.1. 

35 Generalize the preceding exercise to quotient geometries PIU, where U is 
an arbitrary subspace of P. 

36 Let A be a d-dimensional affine geometry, and let Q be a point A. Show 
that the set of subspaces of A through Q (the quotient geometry A/Q) is 
a projective geometry of dimension d - 1. 

37 Let Ui _ 1 and Ui + 2 be two subspaces of dimension i-I and i + 2 of a 
projective or an affine geometry such that U i - l <;;; U i + 2. Show that the quo­

tient geometry Ui + 2/Ui-1 is a projective plane. 

38 Let P be a projective geometry, and let Q be a point and g a line of P 
with Q I g. Describe precisely the differences between 
- the residue of g, 
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- the residue of {Q, g}, 
the residue of Q, 

the quotient geometry P IQ, 
the quotient geometry Pig. 

49 

39 One says that d + 1 hyperplanes of a d-dimensional projective space are 
independent if they have no common point. In other words, the hyperplanes 
Ho, Hj, ... , Hd are independent if n H j = 0. 

Let Ho, HI, ... , Hd be independent hyperplanes of a d-dimensional projec­
tive space P. For s ~ d compute the dimension 

dim(Ho ("') HI ("') ... ("') Hs)' 

40 Let P be a finite d-dimensional projective space of order q. Show that the 
number of points outside a system of d + 1 independent hyperplanes is 
(q - l)d. 

41 Let g and h be two skew lines of a 3-dimensional projective space P (this 
means that g and h span P), and let P be a point on neither g nor h. 
Show that there is a unique line through P that intersects g and h. 

42 Generalize the preceding exercise as follows: Let P be a (2t + 1)­
dimensional projective space, and let U and W be two skew t-dimensional 
subspaces of P. If P is a point outside U and W then there is a unique line 
through P that intersects U and W. 

43 Let S be a geometry of rank 2 with the following properties: 
(1) Through any two distinct points there is precisely one line. 
(2) There is an integer q ~ 2 such that any line has exactly q points. 
(3) Every point is on exactly q + 1 lines. 
Show that S is an affine plane. 

44 Let S be a geometry of rank 2 with the following properties: 
(l) Through any two distinct points there is precisely one line. 
(2) There is an integer q ~ 2 such that any line has exactly q + 1 points. 
(3) S has a total number of q2 + q + 1 points. 
Show that S is a projective plane. 

45 Interpret the Platonic solids (regular tetrahedron, cube, octahedron, dodeca­
hedron, and icosahedron, see [Cox69]) as geometries of rank 3. (The elements 
of Q are the vertices, edges, and faces of a Platonic solid.) In each case, de­
termine the residue of a point. 
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46 Is there a geometry with diagram 

• • • 
that is not a projective space? 

47 Let G be a geometry of rank d with diagram 
aff •• ---~ ....... ---.e----------... ~--... 

o 2 d-2 d-J 

and let X be an element of type i ~ 2. Show that the geometry of points and 
lines that are incident with X is an affine space of dimension i. 

48 How does one have to modify the algorithm described in Section 1.8 if the 
number of nodes is smaller than qd? 

49 Explain how the example with the cube is a special case of Theorem 1.8.1. 

50 Formulate Theorem 1.8.1 explicitly in the case q = 2. 

51 Another algorithm to solve the problem of distributing information (see Sec­
tion 1.8) is the following. 
Let P be a projective plane, and let q> be a map of the points of P onto the 
lines of P such that no point X is incident with its image q>(X). The algo­
rithm works as follows: 
In each round each point X sends its information to all points on the line 
q>(X) and to the points Y, where q>(Y) is a line through X. 
Show that already after two rounds every point has all the information; 
moreover, the number of transactions is c· N· IN, where N is the number of 
nodes. 
[This is difficult and needs some time, cf. [AgLa85]).] 

True or false? 

D Any projective plane is a projective space. 

D Any projective space has at least seven points. 

D Any projective space of dimension ~ 3 has infinitely many points. 

D Four points are independent if and only if no three of them are on a common 

line. 

D There is no projective space whose dimension is infinite. 

Project 

D The points PI,' .. , Pt are independent if and only if 

D Any finite projective plane has an odd number of points. 

o Any finite projective space has an even number of points. 

D The quotient geometry of an affine space is an affine space. 

D The quotient geometry of an affine space is a projective space. 

Project 

51 

One can also introduce affine spaces axiomatically and then show that they can be 
completed to projective spaces. A first step in this direction is to imitate the pro­
cedure for projective spaces, that is to prove the analogous statements to the theo­
rems in Section 1.3. A particularly important axiom system for affine spaces is the 
following, which appeared for the first time in Tamaschke [Tam72]): Let S = 

(9', §, I) be a geometry of rank 2 having the following properties: 
(I) Any two distinct points are on precisely one common line. 
(2) S has a parallelism. 

(3) (Triangle axiom): Let A, B, C be three noncollinear points, and let A', B' 
be points such that AB 11 A'B'. If g is the line through A' parallel to AC, and h 
is the line through B' parallel to BC then g and h intersect in a point C' (see 
Figure 1.15). 

B' 

Figure 1.15 The triangle axiom 

(4) There is a line with at least two points; there are at least two lines. 

One can show that such a geometry is an affine space as we have defined it. Try to 
proceed as far as possible in this direction. In particular, you should prove the 
following exercises. 
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1 (Trapezoid axiom) [Lenz54]: Let A, B. C be noncollinear points. Then for 
any point B' on AB. the line through B' parallel to BC intersects AC (see 
Figure 1.16). 

~ ____ ~C 

__ --------------------~~C' 

Figure 1.16 The trapezoid axiom 

2 Let U be a subspace (what is that?), and let P be a point outside U. Then 
one can describe the span (U, P) (what is that?) of U and P as follows: Let 
Q be an arbitrary point of U. Then (U, P) consists of the points on the lines 
through the points X of U that are parallel to PQ (see Figure 1.17). 

U 

Figure 1.17 The span of U and P 

3 Let U be a subspace, and let P be a point outside U. Then for each point Q 
of U we have: the span (U, P) consists precisely of the points in the planes 
(g, P), where g runs through all lines of U through Q. (Cf. exercise 14.) 

4 Let U be a subspace, and let P be a point outside U. Then the span (U, P) 
consists precisely of the points on the lines PX with X E U and the points 
on the lines through P that are parallel to some line of U (see Figure 1.] 8). 
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u 
Figure 1.18 The span of U and P 

5 Define independence of points and the notions 'basis' and 'dimension'. 

6 We say that two subspaces U and U' are parallel if each line of U' is par­
allel to some line of U. Show that the parallelism defined in this way is an 
equivalence relation satisfying Playfair's parallel axiom. 

7 Let U, U' be distinct t-dimensional subspaces. If U, U' are parallel, then 
(U, U') has dimension t + 1. 

8 Let g, g' be two skew lines. (What are those?) Prove that (g, g') has dimen­
sion 3. 

Generalize this to skew t-dimensional subspaces. 

9 Formulate a dimension formula. Prove that your formula is correct. 

You should know the following notions 

Geometry, incidence structure, rank of a geometry, projective space, projective 
plane, duality, linear set, subspace, span, independent set, basis, dimension, hy­
perplane, quotient geometry, order, affine space, affine plane, point at infinity, 
hyperplane at infinity, parallelism, Playfair's parallel axiom, parallel class, flag, 
residue, diagram, Buekenhout-Tits geometry. 
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The introduction of coordinates (numbers) in geometry goes back to the French 
philosopher ('cogito, ergo sum'), mathematician, and scientist Rene Descartes 
(1596-1650). The aim of this 'analytic geometry' is to develop a method by which 
one gets geometrical results by mechanically manipulating numbers. While in 
synthetic geometry one would like to get insight, in analytic geometry one wants 
to get results. An advantage of analytic geometry is that one can efficiently apply 
methods of algebra in general and linear algebra in particular. 

The importance of analytic geometry should not be underestimated. The de­
scription of space by numbers is on everybody's list of the important milestones in 
the history of mathematics. It is often possible to grind out results for which a 
synthetic approach is unavailable or unsuitable. 

2.1 The projective space P(V) 

All considerations in this chapter are based on vector spaces. But in contrast to 
linear algebra, in geometry we use vector spaces not only over fields, but also over 
noncommutative structures, the so-called skewfields. 

In order to clarify matters we shall repeat some definitions. By a division ring 
we mean a set F together with two binary operations + and " called addition 
and mUltiplication, that fulfils all axioms of a field except possibly the commuta­
tivity of multiplication. More precisely, a division ring is a triple (F, +, .), where 
F is a set and +,. are binary operations on F such that (F, +) is an abelian 
group with identity element 0, (F\{O},·) is a (not necessarily commutative) 
group, and both right and left distributive laws hold. 

Although the terminology we shall use here is not universally agreed upon, the 
following convention seems to be the most widely used. A field is a division ring 
with commutative multiplication. A skewfield is a division ring such that the 
multiplication is not commutative; so in a skewfield there is at least one pair of 
elements x, y such that X· Y * y. x. 

One can define vector spaces over division rings in the same way as vector 
spaces over rings. If we say 'V is a left vector space over the division ring F' we 
mean that if v is a vector and a an element of F, then av is again a vector in 
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V. We shall deal only with left vector spaces, unless otherwise specified, and 
hence call them simply vector spaces. 

The basic theory of vector spaces over division rings can be developed in just 
the same way as for vector spaces over fields. So all elementary properties of in­
dependence, basis, dimension, subspaces, and linear maps also hold in the more 
general context. 

Definition. Let V be a vector space of dimension d + I Z 3 over a division ring 
F. We define the rank 2 geometry P(V) as follows: 

the points of P(V) are the I-dimensional subspaces of V, 
- the lines of P(V) are the 2-dimensional subspaces of V, 
- the incidence of P(V) is set-theoretical containment. 

Warning You will no doubt have noticed that there is an ambiguity that arises 
from calling 1-dimensional subspaces of a vector space 'lines of the vector space' , 
while the 2-dimensional subspaces are called 'lines ofP(V),. Accept the definition 
as it is; before long you will get used to it. 

Remark. We shall have to distinguish between the dimension of a projective space 
and the dimension of a vector space. Therefore we shall use the symbol dimy to 
denote the vector space dimension. 

The following theorem says that these geometries P(V) are in fact projective 
spaces. In the next chapter we shall see that, conversely, if a projective space has 
dimension 3 or greater then it is essentially P(V) for some V. (There are, how­
ever, lots of projective planes that are not of this type.) 

2.1.1 Theorem. Let V be a vector space of dimension d + I Z 3 over a division 

ring F. Then P(V) is a projective space. We call P(V) the projective space 
coordinatized by F. 

Proof We have to show that axioms I to 4 hold. 
Axiom 1. Let P and Q be two distinct points of peV). Then, by definition, 

there are vectors v, WE V different from the zero-vector 0 with P = (v) and Q 
= (w). (Here, 0 denotes the span in the vector space.) Since P"* Q we have (v)"* 
(w). Hence the vectors v and w are linearly independent. Therefore (v, w) is a 
2-dimensional subspace of V and thus, by definition, a line of P(V). 

Since this subspace contains P (= (v» as well as Q (= (w» it follows that 
(v, w) is a line through the points (v) and (w). Since, on the other hand, any line 
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through (v) and (w) must contain the subspace (v, w), the line through (v) 
and (w) is uniquely determined. 

Hence (v, w) is the uniquely determined line through (v) and (w). 
Axiom 2. Let gl = POP l and g2 = POP2 be lines through a common point Po 

that are intersected by the line h = P j P2. Moreover, let Q"* Plo P2 be a point on 

h and QI"* Po, PI a point on gl' We have to show that QQI intersects the line 
g2 in some point. (Make yourself a picture.) 

If gl = g2 the assertion follows trivially. We suppose therefore gl "* g2 and 
choose the vectors vo' VI, v2 E V in such a way that we have Po = (vo), PI = 

(VI) and P2 = (V2)' Since the points Po, Plo and P2 are noncollinear, the vectors 
vo' VI, and v2 are linearly independent. 

Consider the subspace V' of V that is generated by vo, VI, and v2' Let wI 
be a vector with QI = (wI), then wI E (vo, VI) ~ V'. Moreover, Q = (w) ~ (vo, 
vj, V2) = V'. In particular we have that the line QQI is a 2-dimensional subspace 
of V'. Thus, from V' ~ (g2, QQl) it follows that V' = (gz, QQI)' 

Since g2 is a also 2-dimensional subspace of V', by the dimension formula for 
vector spaces, we are able to compute the dimension dimy(g21\ QQI) of the in­
tersection of g2 and QQI: 

dimy(g21\ QQI) = dimy(g2) + dimy(QQI) - dimy«g2' QQl» 

=2+2-3=1. 

Hence g2 intersects the line QQl in a I-dimensional subspace of V, so in a 
point of P(V). 

Axiom 3. An arbitrary line (vj, v2) contains at least the three different points 
(VI), (V2) and (VI + v2)' 

Axiom 4. Since V has dimension at least 3, there exist three linearly independ­

ent vectors vo' Vb v2 in V. Then (vo, VI) and (vo, v2) are two distinct lines of 
P(V). D 

Remark. We used the hypothesis 'dimyCV) z 3' only in order to show axiom 4. 

2.1.2 Lemma. Ca) Let V' be a subspace of the vector space V. Then P(V') is a 
subs pace of P(V). 

Cb) Let U be a subs pace of the projective space P(V). Then there exists a vector 
subs pace V' of V such that P(V') = U. 

Proof Ca) We have to show that the set of 1-dimensional subspaces contained in 
V' forms a linear set of P(V): Let (v), (w) ~ V'. Then v, WEV', and so (v, w) 
~Vt. 
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(b) Let {Po, PI>' .. , Pt} be a basis of U. Then there are vectors vo. VI>' .. , vt 

with 

Pj=(v) (i=0, 1, .. . ,/). 

Let vo, vI> ... , VI generate the vector subspace V' of V. 
We claim that P(V') = U. 

We shall show this by induction on t. For t = ° the assertion is triviaL 

We consider also the case t = 1. Let g = POP I be a line of P(V) with Po = 

(vo), PI = (vI)' Then the assertion follows, since by 2.1.1 g = (vo, vI)' 
Assume now that the assertion is true for t ~ 1. Consider a (t + 1 )-dimensional 

subspace 

of P(V). By induction, there is a vector subspace V" of V such that P(V") = 

(Po, PJo ... , PI)' Thus 

U = «Po, PI> ... , Pt), Pt + I) = (P(V"), Pt + I)' 

Let vt + I be a vector with Pt + I = (vt ~ I), and let V' be the vector subspace 

spanned by V" and vl + I. 

First we show the inclusion P(V') ~ U. Let P = (v) be a point ofP(V'). Then 

there is a vector v" E V" such that 

v = av" + bVt + I (a, b E F). 

Therefore the point P is incident with the line of U that passes through the 
points (v") and (vt + I) of U. Thus any point of P(V') lies in U. 

Conversely, let Q be a point of U. Then, by 1.3.1, Q is incident with a line 
XP t + b where X is a point of P(V"). If v" is a vector with X = (v"), then Q is 

on the line through (v") and (vt + I)' So, by case t=1,thereexist a,bEF with 

v = av" + bv I + I E V' 

and Q = (v). Hence Q is a point of P(V'). 

2.1.3 Corollary. The projective space P(V) has dimension d. 

Proof If dim(P(V» ~ d + 1 then there would exist a flag 

UOcUlc ... cUd 

o 

of nontrivial subspaces of P(V). By 2.1.2 this corresponds to a chain of d non­
trivial vector subspace of V that are properly contained in each other. This is 

impossible, since dimv(V) = d + 1. 
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Similarly one proves that dim(P(V» ~ d: Since dimv(V) = d + 1 there is a 
chain of d - 1 nontrivial subspaces of V that are properly contained in each 
other. These subspaces correspond to a flag of d - 1 nontrivial subspaces of 
P(V). 0 

2.1.4 Lemma. The line of P(V) through the points (v) and (w) consists of the 

point (w) and the points (v + aw) Ca E F). In particular we have: if F is ajinite 

field with q elements, q E N, then any line of peV) has exactly q + 1 points. In 
this case P(V) has order q. 

Proof Each point (u) of the line through (v) and (w) can be written as 

(u) = (av + bw) with a, b E F. 

If a = ° then b '* 0, hence (u) = (bw) = (w). If a '* ° then 

(u) = (av + bw) = (v + ba-1w). 

Conversely, any point of the form (v + aw) is a point on the line through (v) 

~M 0 

Remarks. 1. Lemma 2.1.4 implies in particular that for any prime power q (that is 
for any integer q = pa where p is a prime number and a E N) and any positive 

integer d ~ 2 there is a projective space of order q and dimension d. (For any 
prime power q there is a finite field F with exactly q elements. See for in­

stance [Lang65], VII,S.) 

2. If V is a (d + I)-dimensional vector space over the division ring F then the 
projective space P(V) is denoted by PG(d, F); one calls P(V) the d-dimensio­
nal projective space over the division ring F. If F is a finite field of order q then 
P(V) is also denoted by PG(d, q). (This notion makes sense since up to isomor­

phism there is only one finite field with q elements.) 

2.2 The theorems of Desargues and Pappus 

We shall now prove two extremely important configuration theorems, namely 
the theorem of Desargues (Girard Desargues (1591-1661») and the theorem of 

Pappus (Pappus of Alexandria, ca. 300 A.D.). The assertions of the theorems of 
Desargues and Pappus are called 'theorems' since they were studied by Desargues 
and Pappus in the real plane, where they truly hold. For us, these assertions are 
simply unproved statements that could hold in a projective space or not. We shall 
present examples for both phenomena. 
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Definition. Let P be a projective space. We say that in P the theorem of De­

sargues holds if the following statement is valid. For any choice Ab Ab A3, Bj, 
Bb B3 of points with the properties 

- Ab Bi are collinear with a point C, C"* Ai"* Bi "* C (i = 1,2,3), 

- no three of the points C, Ab Ab A3 and no three of the points C, Bb B2, B3 
are collinear, 
we have that the points 

P 12 := A]A2 (\ B]B2' P23 := A2A3 (\ B2B3, P31 := A3A] (\ B3B) 

lie on a common line (see Figure 2.1). 

C 

Figure 2.1 The theorem of Desargues 

The theorem of Desargues may seem to be very special, but it will play a very 
important role. First we show that it holds in projective spaces of the form P(V). 

2.2.1 Theorem. Let V be a vector space of dimension d + lover a division ring 

F. Then the theorem of Des argues holds in P(V). 

Proof We suppose that the hypotheses of the theorem of Desargues are fulfilled. 

Let Vb v2, v3 be vectors such that A] = (VI), A2 = (v2), A3 = (V3)' Since Aj, 
A2, A3 are not on a common line, Vb v2, v3 are linearly independent. Therefore, 
they form a basis of the 3-dimensional vector space V' := (Vb v2, v3)' We distin­
guish two cases. 
Case 1. The point C lies in the plane that is spanned by Ab A2 and A3. 
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Then there are ab a2, a3 E F with C = (a]v] + a2v2 + a3v3)' Since no three of 
the points Ab Ab A3, C are collinear, we have ab ab a3 "* O. Therefore, re­
placing Vi by ajvi' if necessary, we may assume w.l.o.g. that C = (v] + v2 + v3)' 

Since C, Ai, and Bi are collinear there are a), aZ, a3 E F such that 

B] = (VI + v2 + v3 + a]v]) = «a) + l)v] + v2 + v3), 

B2 = (v] + (a2 + 1)v2 + v3), 

B3 = (VI + v2 + (a3 + J)v3)' 

Now we can determine the vectors that represent the points P i/ 

P 12 = A]A2 (\ B]B2 

= (Vb v2) (\ «a] + l)vI + v2 + v3, v] + (a2 + 1)v2 + v3) 

= (a]vI - a2v2)' 

We get the last equality as follows. The vector a]v] - a2v2 "* 0 is contained in 

(Vb V2) as well as in «a] + l)vI + v2 + v3, v] + (a2 + l)v2 + v3)' Since these 
subspaces are distinct, they can intersect each other in a subspace whose dimen­
sion is at most 1. Therefore, the assertion holds. Similarly one gets 

P23 = (a2v2 -a3v3) 

and 

P3] =(a3v3- a ]V]). 

This implies together that all three points Pl2' P23, and P3] lie on the line 

(ajvI - a2v2, a3v3 - alv]). 

Case 2. The points C = (v> and A] = (v]), A2 =(v2) and A3 = (v3> do not lie in 
a common plane. 

This case is easier. The vectors v, vI> v2, v3 are linearly independent. Therefore 
we assume w.l.o.g. that 

B] = (v + VI), B2 = (v + v2), B3 = (v + v3)' 

From this it follows easily that 

P12 = AIA2 (j BIB2 = (vI> v2) (j (v + vI> v + v2) = (VI - v2), 

P23 = (v2 - v3), 

P3j =(v3- v I)' 

Since the points P]b P23, P3I lie on the line (VI - v2, v2 - v3) we have proved 
the theorem of Des argues. D 
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Remark. Observe how cleverly we have used the w.l.o.g.tool. 

Definition. Let P be a projective space. We say that in P the theorem of Pap­
pus holds if any two intersecting lines g and h with g * h satisfy the following 

condition. If AI> A2, A3 are distinct points on g and BI> Bb B3 are distinct 
points on h all different from g n h then the points 

Q\2:= AjBZ n B jA2, QZ3 := A2B3 n BzA3 and Q31 := A3B j n B3A I 

lie on a common line (see Figure 2.2). 

c h 

g 

Figure 2.2 The theorem of Pappus 

Remark. The theorem of Pappus always operates in a plane, namely in the plane 

spanned by g and h. 

2.2.2 Theorem. Let V be a vector space over the division ring F. Then the theo­

rem of Pappus holds in P(V) if and only if F is commutative (in other words, if 
F is afield). 

Proof First we consider only the points Ab A2, Bb B2 and the point C := g n h 

= AIA2 n B IB2· 
Let u, v, w be vectors with C = (u), AI = (v), and Bl = (w). Then, clearly, 

A2 = (u + ay) and B2 = (u + a'w) with a, a' * O. Therefore we may assume 

w.l.o.g. that 

AI = (v), Az = (u + v), Bl = (w), and Bz = (u + w). 

Let a and b be arbitrary elements of F. Since for the question of commutativity 

only the elements * 0, I play a role (for ° and I commute with any element) we 

may suppose that a, b * 0, 1. We define 

2.2 The theorems of Desargues and Pappus 63 

A3 := (u + av), B3 := (u + bw). 

Since a, b * 0, I we have A3 * Aj, A2 and B3 '* B l, B2. 
We claim: the points Q12, Q23, Q3J are collinear if and only if ab = ba. 

In order to show this we compute the coordinates of the points Qij' (Observe 

that in computing a spanning vector of Qij we will not use that F is commuta­
tive.) 

QJ2 = AIB2 n A2B J = (v, u + w) n (u + v, w) = (u + v + w). 

For obviously we have u + v + W E (v, U + w) and u + v + WE (u + v, w). Hence 

we have (u + v + w) <;;;; (v, u + w) n (u + v, w). A dimension argument shows that 
equality holds. Similarly we see that 

Q31 = A3B l n AIB3 = (u + av, w) n (v, u + bw) = (u + av + bw). 

Finally, we get 

Q23 = A2B3 n A3Bz = (u + v, u + bw) n (u + av, u + w) 

= «a + (a - I)(b _l)-I)·u + a·v + (a - I)(b - I)-l.bw) 

for we have 

(a + (a - l)(b _l)-I)·u + a·v + (a - l)(b - I)-l.bw 

= a·(u + v) + (a - I)(b - I)-I·(u + bw) 

E (u+v, u+bw), 

and 

(a + (a - I)(b _l)-l)·u + a·v + (a - I)(b -l)-I·bw 

=(a+(a-I)(b-I)-l +(a-l)(b-l)-lb-(a-l)(b-I)-lb)·u 

+ a·v + (a -I)(b - I)-l.bw 

= (a + (a - I)(b _1)-1(1 - b) + (a - l)(b - l)-Ib)·u 

+ a·v + (a - I)(b - I)-l.bw 

= (a - (a - 1) + (a - l)(b - l)-Ib)·u + a·v + (a - l)(b - l)-l.bw 

= (u + ay) + (a - l)(b -l)-Ib·(u + w) 

E (u + av, u+w). 

Again a dimension argument proves the assertion. 

Putting these together we see 
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<=> «a + (a -l)(b - 1)-I)·u + a·v + (a - l)(b - I)-I.bw) 

~ (u + av + bw, u + v + w) 

<=> there exist x, y E F with 

(a + Ca - I)(b _1)-I)·u + a·v + (a - l)(b - I)-l.bw 

= xu + xav + xbw + yu + yv + yw 

<=> the following equations hold: 

a + (a - l)(b _1)-1 = x + y, 

a=xa+y, 

(a-l)(b-1)- lb=xb+y. 

The first equation means y = a + (a - 1)( b - 1 )-1 - x, and together with the second 
gives 

x= (a-I)(b-l)-I(1-a)-I, 

thus 

y = a + (a - 1)(b _1)-1(1 - (1 - a)-I). 

Substituting these results in the third equation we get by patient formula manipu­
lating 

<=> (a - I)(b - I)-Ib 

= Ca - l)(b _1)-1(1 - a)-Ib + a + (a -l)(b - 1)-1(1- (1- a)-I) 

<=> b = (1- a)-Ib + (b - 1)(a - 1)-la + (l - (1 - a)-I) 

<=> (l-a)b=b+(l-a)(b-I)(a-1)-l a +(1-a)-1 

<=> (1 - a)b 

= b + (1 - a)(b - l)(a - I)-la 

+ (1 - a)(b -1)(a _1)-1 - (1 - a)(b - I)(a - 1)-1 - a 

<=> (l - a)b 

= b + (I - a)(b - I)(a -I)-I(a -1) + (1 - a)(b - I)(a - I)-I - a 

<=> (I-a)b = b + (l-a)(b -I) -a +(l-a)(b-I)(a-l)-I 
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<=> O=b-(l-a)-a+(l-a)(b-l)(a-l)-I 

<=> 1 - b = (1 - a)(b - I )(a - 1)-1 

<=> (l-b)(a-I)=(l-a)(b-I) 

<=> ba = ab. o 

Remark. The theorems of Desargues and Pappus are not independent. the theorem 
of Pappus is stronger. This is expressed in the following theorem. 

2.2.3 Hessenberg's theorem. Let P be an arbitrary projective space. If the theo­

rem of Pappus holds in P then the theorem of Desargues is also true in P. 

We will not prove this theorem here. Proofs can be found in the literature, for in­
stance in [Lin69], [Lenz65]. The most beautiful proof is due to A. Herzer [Her72], 
who proved Hessenberg's theorem using dualities. 

2.3 Coordinates 

Definition. We fix a basis {vD, v], ... , Vd} of V. Then we can express any 
vector 

v=aOvO+alvl + ... +advd E V 

uniquely by its coordinates (aO, ab ... , ad)' 

We define an equivalence relation - on the set of (d + l)-tuples different from 
(0, ... ,0) whose elements are in F by 

(ao, a], ... , ad) - (bO' bI> ... , bd) :<=> 

there is an a E F\ {O} with (ao, ab ... , ad) = a·(bO, bI> ... , bd). 

We say that a point (v) of P(V) has homogeneous coordinates (aO, ab' .. , ad) 
if 

Clearly, two such (d + I )-tuples are equivalent if and only if they are homogene­
ous coordinates of the same point of P(V). Therefore, homogeneous coordinates 
are not uniquely determined by the point they represent. (Be careful when using 
the definite article.) 
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Therefore we proceed as follows. We denote the equivalence class containing 

(aO, ab ... , ad) by (ao: aj: ... : ad) and then write 

P = (ao: a( ... : ad), 

if P = (aovo + ajvj + ... + a~d)' We shall also call (ao: a( ... : ad) the homo­
geneons coordinates of P. 

Homogeneous coordinates have the advantage of being flexible. One important 

feature is that we can w.Lo.g. normalize the first (or last) nonzero entry to 1. 

Example. The line through the points with homogeneous coordinates 

(ao: a( ... : ad) and (bo: hi: ... : bd) consists of the points with the following 

coordinates: 

(ao: aj: ... : ad) and (bo: bl : ... : bd) + a·(ao: al: ... : ad), a E F. 

In particular, the line through (l: 0, 0: ... : 0) and (0: 1: 0: ... : 0) consists of 

(1: 0: 0: ... : 0) and Ca: 1: 0: ... : 0). 

Next, we shall study how one can describe higher-dimensional subspaces by 

coordinates. 

2.3.1 Theorem. Let Pj, Pb ... , Pt be points of P(V) with homogeneous 

coordinates 

Pt = (atO: atl:"': atd)' 

Then the points Pj, P2, ... , Pt are independent if and only if the matrix 

... :::J 
has rank t. 

In particular we have: d + 1 points form a basis if and only if the matrix whose 

rows are the homogeneous coordinates of the points is nonsingular. 

Proof If the above matrix has rank t then the homogeneous coordinates of the 
points span at-dimensional subspace of V. So, by 2.1.2, the points PI> 
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P2' ... , Pt span a Ct - 1 )-dimensional subspace P(V); therefore they are inde­
pendent. 

Conversely we suppose that PI> P2>' .. , Pt are independent. If the rank of the 
above matrix were smaller than t, then the homogeneous coordinates of the points 
Pj, P2, ... , Pt would span a subspace of V with dimension smaller than t. Thus 
Pb P2> ... , Pt would span a subspace of P(V) with dimension smaller than 
t - 1; hence Pj, P2> ... , Pt would not be independent. 0 

2.3.2 Theorem. Let V be a vector space of dimension d + lover the division 

ring F, and let P(V) be the corresponding projective space. Let H be a hyper­

plane of P(V). Then the homogeneous coordinates of the points of H are the 

solutions of a homogeneous equation with coefficients in F. Conversely, any ho­

mogeneous equation that is different from the 'zero equation' describes a hyper­
plane of P(V). 

Proof Let H' be the hyperplane of V that corresponds to H (see 2.1.2(b»; we 
have, therefore, P(H') = H. The coordinates of the vectors in H' are solutions of a 
homogeneous equation. Conversely we know from linear algebra that the solu­

tions of any homogeneous equation different from the zero equation are a sub­
space of dimension d. Hence the space of solutions is a hyperplane of V and 
therefore a hyperplane of P(V). 0 

2.3.3 Corollary. Any t-dimensional subs pace U of a projective space of dimen­

sion d given by homogeneous coordinates can be described by a homogeneous 

system of d - t linear equations. More precisely: there exists a (d - t)x( d + 1) 

matrix H such that a point P = (aO: al: ... : ad) is a point of U if and only if 

(ao: al: ... : ad)' HT = O. 

Proof By 1.3.10, U is the intersection of d - t hyperplanes. o 

Now we can describe any hyperplane by a homogeneous equation. For instance, 

we shall speak of the 'hyperplane xo = 0' and we mean by this the hyperplane 

whose points have homogeneous coordinates (0: at: ... : ad)' 
We shall also describe a hyperplane by the coefficients of a corresponding ho­

mogeneous equation. For instance, the hyperplane with equation Xo = 0 will be 
represented by [1: 0: ... : 0]. Note that these are also homogeneous coordinates. 

2.3.4 Theorem. Let P = P(V) be a projective space whose points are given by 

homogeneous coordinates (ao: at: ... : ad) with a/ E F, (ao, ab' .. , ad) "* (0, 0, 
... , 0). Then any hyperplane of P(V) can be represented by [bo: b l : ... : bd] 
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with bi E F, [bO, bl> ... , bd] *' [0, 0, ... , 0]. Conversely, to any such (d + 1 )-tuple 
[bo: bl : ... : bd] there belongs a hyperplane. Moreover, we have 

(ao: al: ... : ad) I [bo: b( ... : bd] <=> aobo + a lb 1 + ... + bdad= O. 

The proof follows directly from 2.3.2, since any homogeneous linear equation in 

d + 1 variables can be described by a Cd + 1 )-tuple [bo: b( ... : bd] of homoge­
neous coordinates. o 

Now we consider the dual geometry of a projective space P. This means that we 

consider P as a rank 2 geometry consisting of points and hyperplanes. Then pLl 

is the geometry whose points are the hyperplanes of P, and whose blocks are the 
points of P (cf. 1.2.2). 

2.3.5 Corollarv. Let P = P(V) be a coordinatized projective space. Then pLl == P. 
In particular, pLl is coordinatized as well. Therefore the principle of duality holds 

for the class of all coordinatized projective spaces of fixed dimension d. 0 

Now we shall introduce coordinates for affine spaces. 

2.3.6 Theorem. Let Roo be the hyperplane of P(V) with equation Xo = O. Then 
the affine space A = P \ Roo can be described as follows. 

- The points of A are the vectors (ab"" ad) of the d-dimensional vector 
space Fd; 

- the lines of A are the cosets of the I-dimensional subs paces of Fd; that is the 
set u + (v), where u, v E Fd, v *' o. 

- incidence is set-theoretical containment. 

Proof Since the homogeneous coordinates of the points on Roo have as first en­

try 0, any point P outside Hoo has homogeneous coordinates (ao: al: ... : ad) 
with ao *' O. Thus it has homogeneous coordinates (1: a I: ... : ad) with uniquely 

determined ab"" ad E F. Hence we can identifY a point P of A "vith the 

d-tuple (ajo ... , ad)' One calls (ab"" ad) the inhomogeneous coordinates of 
the point P. 

Now we shall describe the lines of A: We know that any line g of A has pre­

cisely one point (0: b( ... : bd) in common with Hoo. If (1: al: ... : ad) is an 

arbitrary point of A on g, then the points of A on g have the following homo­

geneous coordinates: 

(1: al:"': ad) + a'CO: b l : ••• : bd) with a E F. 

Therefore, the inhomogeneous coordinates of the points on g are as follows: 
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In other words: the affine points on g are precisely the points of the coset (a], 

... , ad) + «bb ... , bd» ofthe I-dimensional subspace «b], . .. , bd» of Fd. 

Conversely, let (aj, ... , ad) + «bb ... , bd» be a coset of a I-dimensional 
subspace «b], ... , bd» of Fd. Then, by the above construction, this coset corre­

sponds to the 2-dimensional subspace «(1, ab ... , ad)' (0, bj, ... , bd» of Fd+ I; 

it is therefore a line of P(V). Since this line intersects Hoo just in the point (0: 
b I : ... : bd), the coset in question is a line of A. o 

Notation. If Hoo is a hyperplane of P = PG(d, F) then we denote the affine 

space A = P\Hoo by AG{d, F) and call it the affine space of dimension d coor­

dinatized over F. If F has finite order q. then we also denote A by AG{d, q) . 

Since any two hyperplanes of PG(d, F) can be mapped onto each other by a 

collineation, the definition of AG(d, F) is independent of the choice of the hyper­
plane Hoo (see also exercise 14). 

Remark. If the theorem of Desargues holds in P, it holds also in A = P\Hoo. 
When formulating the theorem of Desargues in affine spaces one has to observe 
that two lines in a plane do not necessarily meet, but can also be parallel. 

2.4 The hyperbolic quadric of PG(3, F) 

We now present a theorem which plays a crucial role for the construction of geo­
metrically important objects, namely quadrics (see Chapter 4). 

Definition. Let P be a projective space. 

(a) We call a set ~ of subspaces of P skew if no two distinct subspaces of ~ 
have a point in common. We also speak of skew subspaces. 

(b) Let ~ be a set of skew subspaces. A line is called a transversal of ~ if it 
intersects each subspace of ~ in exactly one point. 

2.4.1 Lemma. Let P be a projective space. Let gI and g2 be two skew lines, 

and denote by P a point outside gl and g2' Then there is at most one transver­
sal of gI and g2 through P. If P is 3-dimensional then there is exactly one 
transversal of gl and g2 through P. 

Proof Assume that there are two transversals hI and h2 through P. Then each 

of these transversals meets the lines gl and g2 in different points. So hI and h2 

span a plane, which contains the two skew lines gI and g2, a contradiction. 
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Now suppose that P is 3-dimensional. Then the plane (P, gl) must intersect 
the line g2 in some point Q. Therefore the line PQ intersects gl and gb hence 
it is a transversal of gl and g2' 0 

The following theorem has been proved for the real projective space by G. Gal­
lucci (see Coxeter [Cox69], p. 257); the theorem is known as the theorem of 
Dandelin (Germinal Pierre Dandelin, 1794-1847). 

2.4.2 Theorem (16 point theorem). Let P be a 3-dimensional projective space 

over the division ring F. Let {gI> g2, g3} and {hI> h2' h3} be sets ofskew lines 
with the property that each line gi meets each line hf Then the following is true: 

F is commutative (hence afield) if and only if each transversal g 'I. {gJ, gb g3} 

of {hJ, hb h3} intersects each transversal h 'I. {hj, h2' h3} of {gl> g2, g3} (see 
Figure 2.3). 

Proof First we fix the following notations. 

'(vI) 

(v3> 

(VI + v3) 

g 
(VI + aV3> 

(VI) := gl (\ hj, (v2):= gl (\ hb 

(v3) := g2 (\ hI> (v4):= g2 (\ h2· 

(v2) (VI + v2) 

(v4) (v3 + v4) 

(V2 + v4) (VI +v2 +v3 +v4) 

Figure 2.3 The 16 point theorem 

h 

J. 
'{VI + bV2) 

\ 
~ 

"\ 

Then g3 (\ hi = (avl + bV3) with 0 * a, b E F. We may assume w.l.o.g. that b = 

1. Replacing vI by vI' = avl we get g3 (\ hi = (VI' + v3); since we can replace 

VI' by VI we have 

g3 (\ hi = (VI + v3)' 

Multiplying v2 by a suitable factor we can similarly assume that 
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gl (\ h3 = (VI + v2)' 

Multiplying v 4 suitably we can assume that 

Finally we get that 
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By hypothesis there is a unique point of intersection of g3 and h3. For this we 
see 

Since the vectors Vb i = 1,2,3,4, are linearly independent we get b l = b2 = a1 = 

a2 and a = 1, hence 

and 

g3 (\ h3 = (VI + V2 + V3 + v4)' 

Let g'l {gl> gb g3} be a transversal of {hJ, hb h3}, and let h'l {hj, h2' h3} be 
a transversal of {g], g2, g3}' We define the elements a and b of F by 

g (\ hi =: (VI + av3), 

h (\ gl =: (VI + bV2)' 

We claim: the lines g and h intersect each other if and only if ab = ba. 

In order to determine the equation of the line g we use the fact that by 2.4.1 
there is at most one line through the point (VI + aV3) that intersects h2 as well 

as h3; this line must be g. Now luckily we can convince ourselves easily that the 

points (v2 + aV4) E (Vb V4) = h2 and (VI + v2 + a(v3 + V4) E (VI + Vb v3 + v4) 
= h3 lie together with (VI + aV3) on a common line. Therefore, necessarily 

g = (VI + aV3, v2 + av4)' 

Similarly we get 

h = (VI + bVb v3 + bV4)' 

Now we simply compute the intersection of the subspaces g and h. For each 
common vector there are x, y, Z, W E F such that 

Since Vb Vb v3, v4 are linearly independent, this is the case if and only if 
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x =Z, y=zb, xa = wand ya = wb. 

This, however, is true if and only if 

xba = zba = ya = wb = xab. 

If g and h have a common intersection then x '* 0 (otherwise x = 0, z = 0, 

y = 0, and w = 0); this implies ba = ab. If conversely ab = ba then 

(v, + QV3 + bV2 + bav4) 

D 

Definition. Let P be a 3-dimensional projective space. A nonempty set !R of 

skew lines of P is called a regulus if the following are true: 

- Through each point of each line of Yt there is a transversal of !R. 
- Through each point of a transversal of 9t there is a line of ~Jt. 

It is clear that the set !R' of all transversals of a regulus !R again form a regu­

Ius; we call it the opposite regulus of ~Jt. 

Figure 2.4 A regulus and its opposite regulus 

If P has finite order q then any regulus consists of exactly q + I lines. 

2.4.3 Theorem. Let P be a 3-dimensional projective space over the division ring 

F. Let g], gz, g3 be three skew lines of P. Then thefollowing assertions are true. 

(a) There is at most one regulus containing gj, g2, and g3' 
(b) If F is noncommutative then there is no regulus in P. 

(c) If F is commutative then there is exactly one regulus through g), gz, and g3' 

Proof (a) By 2.4.1 each point of g3 is on exactly one transversal of g" g2, g3' 
Let !R' be the set of those transversals. These are exactly the transversals of any 

regulus containing gj, g2, g3' Since through each point of g3 there is a line of ~Jt' 

there exist at least three such transversals hj, h2' h3· 
Let P be a point on hi that is not incident ",rjth gj, g2, or g3' Then any 

regulus !R through g" gz, g3 has the property that the line of ~Jt through P is 
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necessarily the transversal of h[, h2' h3 through P. Hence !R is uniqUely deter­
mined. 

(b) follows directly from the above theorem. 

(c) The existence of a regulus also follows from the 16 point theorem. D 

Remark. Since by the theorem of Wedderbum any finite division ring is commu­
tative, i.e. is a field (see for instance [Her64], Theorem 7.2.1), anyfinite 3-dimen­

sional projective space P(V) has the property that through any three skew lines 
there is (exactly) one regulus. 

We shall now show that the points on the lines of a regulus form a 'quadric', 
which means that they are the solutions of a quadratic equation. 

2.4.4 Theorem. Let P be a 3-dimensional projective space over the field F 
which is represented by homogeneous coordinates. Let 

g, =«(1: 0: 0: 0), (0: 1: 0: 0», 
g2 = «0: 0: 1: 0), (0: 0: 0: 1 », 
g3 = «(1: 0: 1: 0), (0: 1: 0: 1» 

be three skew lines. Then the set :l of points on the uniquely determined regulus 
!R through g I, g2, g3 can be described as 

~= {(ao: a( a2: a3) I aOa3 = a,a2 with ai E F, not all ai = O}; 

therefore the coordinates of the points of ~ satisfy the quadratic equation 

xOx3 - xlx2 = O. 

Proof We use the notation introduced in the proof of 2.4.2. If VI = (1: 0: 0: 0), v2 

= (0: 1: 0: 0), v3 = (0: 0: 1: 0), and v 4 = (0: 0: 0: 1) then the points (ao: a,: a2: 
a3) on ~ satisfY 

(ao: al: a2: a3) = k·v, + k·bv2 + k·av3 + k·abv4 = (k: kb: ka: kab) 

where a, b E F are arbitrary, and kEF \ {O}. Hence the coordinates (ao, a I> aZ, 
a3) of any point of :l fulfil the condition 

0= k·kab - ka·kb = aOa3 - a,a2' 

Conversely, let P = (ao: al: a2: a3) denote a point with aOa3 = aja2' If ao '* 0 
then this point can be written as 

P = (ao: a,: az: ajaz/ao), 



74 2 Analytic geometry 

and this is a point on !i. If ao = 0 then al = 0 or a2 = 0; w.l.o.g. al = O. Then 
P can be written as P = (0: 0: a2: a3)' W.l.o.g. we may assume a2 oF O. Therefore 
P = (0: 0: a: ab) ",,;th a, b E F. From these results together it follows that P E !i.D 

Definition. One calls !i the hyperbolic quadric of the 3-dimensional projective 
space P = PG(3, F). 

In Chapter 4 we shall study quadrics in detail. Then the hyperbolic quadric will 

play a fundamental role. 

2.5 Normal rational curves 

For many reasons one is interested in large sets of points that are as independent 
as possible ('in general position'). One reason is the application of finite projec­
tive geometry in coding theory and cryptography. There we will often need such 

sets. 

Definition. Let P be a projective space of dimension d. We say that a set :'i) of 
at least d + 1 points of P is in general position if any d + 1 points of :'i) form 
a basis of P. 

Examples. (a) A set of at least three points in a projective plane is in general po­
sition if no three are on a common line. 
(b) A set of at least four points of a 3-dimensional projective space is in general 
position if no four of them are in a common plane. 

The natural candidates for large sets of points in general position are the 'normal 

rational curves' . 

Definition. Let P = P(V) be a d-dimensional projective space coordinatized over 
a field F. Let the points of P be described by homogeneous coordinates. Then 
the set e of points defined as follows is called a normal rational curve of P: 

e= {Cl: t: (2: t3: ... : rd) \ t E F} u {CO: 0: ... : 0: I)}. 

Example. In a projective plane, a normal rational curve consists of the points 

(l: t: (2) with t E F 

together with the point (0: 0: 1). If we interpret this in the affine plane that is ob­
tained by removing the line with equation Xo = 0 we see that the affine points of 
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the normal rational curve are the points (x 1, x2) with X2 = x 12. These form a pa­
rabola in the affine plane. 

The following theorem says that the normal rational curves are those objects we 
are looking for. 

2.5.1 Theorem. The points of a normal rational curve are in general position. 

Proof We choose d + 1 points of a normal rational curve and consider the matrix 
whose rows are the coordinates of those points. The points under consideration are 
independent if and only if the determinant of the matrix is different from zero. 
Case 1. Our d + 1 points all have the form P

ti 
= (1, ti, ti2, .. . , lid), i = 

l, ... ,d+l. 

Then the determinant is 

t] t]2 (Id 

t2 t 2 2 t/ 

td ti tdd 

td~ ] td+ I 
2 

td+ I 
d 

This is a Vandermonde determinant. It is different from zero if and only if all ti 

are different. Since the points Pt are different the determinant is different from 
zero; hence the points are independent. 
Case 2. The point (0, 0, ... , 0, 1) is contained in our set. 

Let Pt; = (1, t i, t i
2, ... , lid), i = L ... , d, be the other points. Then the deter-

minant is 

I: 
I' 

11 td ti 
10 0 0 

We develop the determinant with respect to the last row and get as in case 1 a 
Vandermonde determinant, which is different from zero since the points are dis­
~~ 0 

2.5.2 Corollary. Each hyperplane intersects a normal rational curve in at most d 

~~ 0 



76 2 Analytic geometry 

2.6 The Moulton plane 

In this section we shall define an affine plane in which the theorem of Desargues 

does not hold universally. This shows that not every affine (and hence not any 
projective plane) is of the form P(V). This plane will be constructed using the 

affine plane over the reals. More precisely one can say that this plane consists of 
two halves of the real plane. 

Definition. We define the geometry M as follows (see Figure 2.5). 
- The points of M are all the pairs (x, y) with x, y E R. 

- The lines of M are described by the equations x = c and y = mx + b with m, 

b, c ER. 

- The incidence is as follows. 

Let (xo, Yo) be a point. It lies on a line x = c if and only if Xo = c. If Xo ~ 0 or 

m ~ 0 then (xo, Yo) is incident with y = mx i- b if and only if Yo = mxo + b. Fi­
nally, if xo> 0 and m < 0 then (xo, Yo) is incident with y = mx + b if and only 

if Yo = 2mx:o + h. 

This geometry M is called the Moulton plane (after the American mathema­

tician F.R. Moulton who first studied this geometry in 1902; see [Mou02]). 

Figure 2.5 The Moulton plane 

One can imagine that the Moulton plane is obtained from the real plane by bend­
ing all lines with negative slope at the y-axis by a factor of2. (Obviously, one can 

take any factor '* 1 instead of2.) 
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2.6.1 Theorem. The Moulton plane is an affine plane in which the theorem of 

Desargues is not true. 

Proof First we shall show that M is an affine plane. 

Axiom 1. Let (xo, Yo) and (x), YI) be two distinct points of M, w.l.o.g. 
Xo ~ Xl)' In the following cases it is clear that these two points are joined by ex­
actly one line of M: 

xO,Xl ~O;XO'XI ~O; or YO~YI' 

Suppose now that Xo < 0, Xl > 0 and Yo > YI' Then our points are certainly not on 
an 'unbent' line. Question: which bent lines are incident with (xo, Yo) and 

(xb Yl)? In order to answer this question we have to search for all m, b E R with 

Yo = mxo + band YI = 2mxI + b. 

From this we get 

hence 

and 

b = (YlxO - 2YOxl) / (xo - 2xI)' 

Thus m and b are uniquely determined. 
Axiom 2. Obviously, the lines x = c as well as the lines with fixed slope 

mER form a parallel class of M. It is easy to see that this parallelism satisfies 
Playfair's parallel postulate (see exercise 18). 

The nondegeneracy axioms are clear. Therefore M is an affine plane. 

It is, however, conceivable that M is also the real plane, only very strangely dis­

guised. But this is not the case, as is shmvn in the following assertion. 

Claim: In M the theorem of Desargues does not hold universally. 

The idea is to draw a Desargues figure in such a way that all but one of the 

crossing points lie in one half, and the last point of intersection is definitely dis­
tinct from the place where it would lie in the real plane. Since in the real plane the 

theorem of Desargues is true, it cannot be true in the Moulton plane. This will 

become clear from Figure 2.6. 
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C 

Figure 2.6 A 'Desargues figure' in the Moulton plane 

o 

2.7 Spatial geometries are Desarguesian 

The following very important theorem says in particular that there is no 'spatial 
Moulton geometry'. 

2.7.1 Theorem. Let P be a projective space of dimension d. If d;:c: 3 then the 

theorem of Desargues holds in P. 

Proof Let AI> A2> A3, Bb B2, B3, PI2> P23 , P31> and C be points that satisfy the 
hypotheses of the theorem of Desargues. We have to show that P12, P23, and P31 
are collinear. 

Case 1. The planes n:= (Ab A2• A3) and \jJ:= (Bb B2, B3) are different (see 
Figure 2.7). 

Since Ai and Bi are collinear with C we have Bi E (C, Ab A2, A3) (i = 1, 
2, 3). Therefore all points and lines in question are contained in the 3-dimensional 
subspace U:= (C, Ab A2, A3) of P. The points P l2, P23, P31 lie in n n \jJ. 

Since any two distinct planes of U intersect in a line, the points PI2> P23, P31 
are collinear. 
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C 

Figure 2.7 

Case 2. The points AI> A2, A3, B1, B2, B3, and C lie in a common plane n. 
We reduce this problem to case 1. In order to do this we construct three non­

collinear points Dj, D2> D3 not in n and two points C', C" such that for C', D]o 
D2, D3, Ai> A2, A3 and C", Db D2, D3, Bj, B2> B3 the hypotheses of case 1 are 
satisfied (see Figure 2.8). 

Let C', C" be two distinct points outside n such that the line C'C" intersects 
the plane n in C. Since C E C'C" n AIBI the lines C'C" and AIB) generate 
a plane. Therefore, the lines C'A) and C"B) intersect in a point DI> which is 
outside n. 

Similarly, there exist points D2, D3 with 

D2 = C'A2 n C"B2 and D3 = C'A3 n C"B3. 

We now show that C', D» D2> D3, A» A2> A3 and C", Dj, D2, D3, B I, B2> B3 
satisfy the hypotheses of the theorem of Desargues. 

If three of the points C', D» D2, D3 are collinear then dim(DIo D2> D3, C'») 
$ 2. Since, by construction, Ai is on C'Db i = 1,2,3, we have that the points Ab 
A2, A3 lie in n n (D]o D2> D3, C'). Since the dimension of this intersection is at 
most 1, it is a point or a line; therefore A I, A2> A3 would be collinear, a contra­
diction. 

By construction of C' it is clear that no three of the points C', Ab A2, A3 are 
collinear. Similarly it follows that C", D" D2, D3, B" B2, B3 also satisfy the 
hypotheses ofthe theorem of Desargues. 
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Figure 2.8 The theorem of Desargues in a 3-dimensional projective space 

Define \If := (D I> D2, D3)' By case 1, the lines 

DID2 and A]A2' D2D3 and A2A3' D3D I and A3A I 

and 

intersect in points of the line g:= 1t (] \If. In particular it follows that AjAj (] BiBj 
is also a point of g: If, for instance, X := DID2 (] A]A2 and Y:= D]D2 (] BIB2 
then X is the intersection of D]D2 and g; similarly Y = DID2 (] g. Hence X = 
Y, and this point can also be described as X = Y = AIA2 (] BIB2 = P!2' 

Therefore the points P]2, P23, P31 are all incident with the line g. 0 
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2.7.2 Corollary. Let P be a projective plane. Then the theorem of Desargues 
holds in P if and only if P can be embedded as a plane in a projective space of 
dimension ~ 3. 

Proof If P is a plane of a projective space whose dimension is at least 3 then, by 
the preceding theorem, the theorem of Desargues holds in P. 0 

Remark. In the next chapter we shall see that the converse of2.7.2 is also true: the 

Desarguesian projective planes are precisely those projective planes that can be 

embedded in a higher-dimensional projective space. 

2.8 Application: a communication problem 

We suppose a set of users who would like to communicate with each other. An 

example is participants of a telephone system. It is impossible that two users get in 
direct contact, but they have to use a network with its switches. Each switch is 
responsible for a certain number of users and can connect any two of 'its' users. 
Any connection between two users needs at least one switch. For economic rea­

sons, the number of switches should be as small as possible. Therefore, our first 
requirement is 
- any two users can be connected usingjust one switch. 

Since any switch should have some use, the second requirement is simple: 
- each switch connects at least two users. 

If all users were connected by only one switch then there would be a lot of mutual 
interference; therefore our third requirement reads (seemingly very modest): 

- there are at least two switches. 

Finally, it should be possible to produce the switches cheaply; therefore we re­

quire also 
- all switches look 'alike '. 
Clearly, this requirement has to be specified further. 

After having formulated the requirements for a communication system, we 
translate this into geometric language. The crucial notion is that of a linear space. 

Definition. A linear space is a geometry L consisting of points and lines such 

that the following three axioms hold. 
(LI) Any two distinct points of L are incident with precisely one line. 

(L2) On any line of L there are at least two points. 

(L3) L has at least two lines. 
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Example. Figure 2.9 shows all linear spaces with at most five points. (By the way, 
lines having only two points are not drawn; they can be uniquely reconstructed.) 

• 
• • 

;/ 

• • • • 

f.--- • • • V- .. 
Figure 2.9 The linear spaces with at most five points 

Using linear spaces we can translate the communication problem into geometric 
language (see [Hag71]). In order to do this, we call the users points and the 
switches lines. Then the first three above requirements translate into the axioms 
for a linear space. This means: in order to obtain a good communication system 

we have to find a linear space 
- that has a number of lines that is a small as possible, and 
- in which all lines look 'alike'. 
We do not know yet what 'looking alike' means precisely, but it certainly means 
that any line has the same number of points (in the language of communication 

systems: that each switch connects the same number of users). 
Now we can construct a first example of a communication system. As linear 

space we consider the projective plane of order 2 with the points 1,2,3,4,5,6, 7 
and the lines 123,145,167,246,257,347,356 (see Figure 2.10). 

Figure 2.10 A communication system using the projective plane of order 2 

It is easy to see that the drawing at the right-hand side of Figure 2.10 is a commu­
nication system: the 'outer' points represent the switches (lines), while the 'inner' 
points represent the users (points). On this first glance, this picture looks wild and 
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complicated, but it really is a communication system, and, as we shall see, a 
communication system with very few switches. 

We shall now analyse the two additional requirements for a linear space, 
namely that it should contain as few lines as possible and that all lines 'look 
alike'. In order to fulfil the second of these requirements, we can certainly suppose 
that all lines are incident with the same number of points. Given these hypotheses 
it is easy to answer the question, what is the minimum number of switches. 

2.8.1 Theorem. Let L be a finite linear space with the property that any line has 
the same number of points. Then we have: the number of lines is at least as big as 

the number of points; equality holds if and only if L is a projective plane or L 
has only three points. 

Proof Let v be the number of points and denote by b the number of lines of L; 
moreover, we denote by k the fixed number of points per line. 
Claim 1: Each point is on the same number r of lines. 

Let P be an arbitrary point, and denote by r the number of lines through that 
point. Since any of the v-I points different from P lies on exactly one of the r 

lines through P and any of these lines has exactly k - 1 points different from P, 
we have 

v-I =r·(k-I). 

In particular, the value r = (v -1)/(k- 1) is independent of the choice of the point 
P. 

Claim 2: We have r ~ k. 

Consider an arbitrary line g. In view of axioms (L2) and (L3) there is at least 
one point P outside g. Since P is connected with each of the k points on g by 
a line and since all these lines are different, P is on at least k lines. Hence r ~ k. 
Claim 3: We have rv = bk. 

On both sides there is the number of incident point-line pairs. 
Now we are ready to prove the assertion of the theorem. Since r ~ k the third 

claim implies that b = vrlk ~ vklk = v. Equality holds if and only if r = k. The 
proof of claim 2 shows that this is the case if and only if any line through a point 
outside a line g intersects this line. This is equivalent to the fact that any two 
lines meet. Therefore we have b = v if and only if L is a projective plane or 'the 
triangle' (which one could also describe as the 'projective plane of order 1 '). 0 

Remark. The above theorem also remains true without the hypothesis that all lines 
have the same number of points. This is the important theorem of de Bruijn and 
Erdos: 
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2.8.2 Theorem (de Bruijn, Erdos [BrEr48]). Let L be ajinite linear space with 

v points and b lines. Then we have b;::: v with equality if and only if L is a 
projective plane or a 'near-pencil' (see Figure 2.11). 

Figure 2.11 A near-pencil 

In [BaBe93] the interested reader can find various proofs of this theorem and a 
general introduction to the theory of linear spaces. 

Thus we have got an important partial result: the communication systems with the 
least number of switches are obtained from projective planes. Now we have to 
look for those projective planes with the property that all lines 'look alike'. For 
this we consider a different representation of the projective plane of order 2 and 
the corresponding communication system. As above. the points are the numbers 1, 
2,3,4.5,6, 7; the lines are now the point sets 124,235, 346,457,561,672, 713. 
(These are exactly the sets {(l + i, 2 + i, 4 + i) liE {l, 2, ... , 7} }.) Thus the 
communication system has the convincing structure shown in Figure 2.12. 

Figure 2.12 A communication system in which all switches look alike 

Here, in fact, all switches look alike: each switch sees the participant connected 

with it in the same way. We can express this in a practical down-to-earth way: the 
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actual connections at all switches (and at all participants) are alike; so one can use 
the same hardware for any switch. 

Which projective planes correspond to those ideal communication systems? 
These are exactly those projective planes that can be constructed using difference 
sets. 

Definition. Let n be a positive integer. A set 'Ji of positive integers is called a 
difference set of order n, if 
- i]) has exactly n + 1 elements, 

- any integer from {I, 2, 3, ... , n2 + n} can be written in a unique way as 

d - d' mod n2 + n + 1 with d, d' E <]). 

Remark. We use the symbol 'mod' in two ways. Firstly, a mod n denotes the least 
nonnegative remainder when a is divided by n. Secondly, a == b mod n Ca is 
congruent to b modulo n') means that a - b is divisible by n, or in other words, 
a mod n = b mod n. 

Examples of difference sets are easy to find. 

( a) The set <])2 = {I, 2, 4} is a difference set of order 2. In order to verify this we 
compute all differences modulo 7 of distinct elements of Yi2: 

1 - 2 mod 7 = 6, 1 - 4 mod 7 = 4, 2 - 4 mod 7 = S, 

2 - 1 mod 7 = 1,4 - 1 mod 7 = 3, 4 - 2 mod 7 = 2. 

Hence all elements of {I, 2, ... , 6} occur exactly once as a difference. 
(b) U sing the same method one can check that the sets 

<])3= {l,2,4, 10} and <])4={1,2,5,15,17} 

are difference sets of orders 3 and 4. 

The importance of difference sets is based on the fact that one can easily construct 
projective planes with them. 

2.8.3 Theorem. Let <]) be a difference set of order n;::: 2. Then the incidence 

structure P(<]) dejined as follows is a projective plane of order n: 

- the points of P(<]) are the integers 0, 1, 2, ... , n2 + n; 

- the lines of P(<]) are the sets <]) + i (i E {O, 1, 2, ... , n2 + n}). Here, <]) + i is 

dejined asfollows: let <]) = {do, d" ... , dn}, then 

<]) + i:= {do + i mod n2 + n + 1, ... , dn + i mod n2 + n + I}; 

- the incidence of P(<]) is set-theoretic inclusion. 
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Before we present the proof, we illustrate the claim of the theorem by means of an 

example. Let n = 3, and let ';j) = g)3' Then the sets g) + i are as follows: 

91+0 {l, 2, 4, 10}, 

91+1 {2, 3, 5, 11} , 

g)+2 {3, 4, 6, 12}, 

':/) + 3 {4, 5, 7, o}, 

91+4 {5, 6, 8, I}, 
91+5 {6, 7, 9, 2}, 

g) + 6 {7, 8, 10, 3}, 

':/) + 7 {8, 9, 11, 4}, 

':/)+ 8 {9, 10, 12, 5}, 

g)+9 {IO, 11, 0, 6}, 

91 + 10 { 11 , 12, 1, 7}, 

':/) + 11 {l2, 0, 2, 8}, 

':/) + 12 {O, 1, 3, 9}. 

One can convince oneself without great difficulties that these sets are the lines of a . 

projective plane of order 3. 

Proof of Theorem 2.8.3: First we show axiom 1 of a projective plane: Let 

x' be two distinct points of P(9'l). Then we have 

x, X' E '11 + j 
~ there are d, d' E g) with x = d + i mod n2 + n + 1, and 

x'=d'+imodn2+n+ 1 

=> there are d, d' E 91 with x - x' mod n2 + n + 1 = d - d' mod n2 + n + 1. 

Thus there is at least one set of the form g) + i containing x and x'. In order to 

obtain '11 + i one first determines d, d' E 91 with 

d - d' mod n2 + n + 1 = x - x' mod n2 + n + 1, 

and then computes the integer i with 

i = x - d mod n2 + n + 1 (= x' - d' mod n2 + n + 1). 

Since, by definition, there is exactly one pair d, d' E g) with this property, it fol­

lows that 91 + i is the uniquely determined line through x and x'. 

Now we show axiom 2'. Let g) + i and 91 + j be two distinct lines. A point x' 
lies in 91 + i and ij) + j if and only if there exist d, d' in ij) with 
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x = d + i and x = d' + j. 

From this we see how to proceed in order to find x: First one determines the ele­
ments d, d' E D with d - d' mod n2 + n + 1 = j - i mod n2 + n + 1. Then it fol­
lows that 

x : = d + i mod n2 + n + 1 (= d' + j mod n2 + n + 1) 

is a common point of 9'l + i and 91 + j. 
Since P(ill) has exactly n2 + n + 1 points and any line is incident with pre-

cisely n + 1 ~ 3 points, the nondegeneracy axioms 3 and 4 are satisfied. 0 

The question of which projective planes can be constructed using difference sets is 
one of the most important and most difficult questions in finite geometry. It is 
known that any finite Desarguesian projective plane can be obtained from a dif­
ference set ([Sing38]). It is conjectured that only the Desarguesian planes stem 
from difference sets. 

Inside geometry, difference sets are very important for two reasons. Firstly, dif­
ference sets provide an extremely economical representation of geometries: in 
order to describe a projective plane of order n, one needs only n + 1 integers. 
Secondly, difference sets are closely connected with certain interesting collinea­
tions. This will be explained in the following. 

2.8.4 Theorem. Let P = P(91) be a projective plane that is constructed using a 
difference set ill of order n. Then the map a that is defined by 

a: x H x + 1 mod n2 + n + 1 

is a collineation of order n2 + n + 1 of P. (Fhe order of a permutation a is the 

smallest positive integer t such that at = id.) The collineation a cyclically per­

mutes the points (and the lines) of P. One calls the group of collineations gener­
ated by a a Singer cycle. 

Proof Clearly, a acts bijectively on the point set of P. We show that a maps 
any three collinear points x, y, z onto collinear points: Since x, y, z are collinear, 
there is a line 9'l + i containing these three points. Then, clearly, the points a(x) = 

x + 1, a(y) = y + 1, a(z) = z + 1 lie on the line g) + (i + 1). Similarly it follows 
from the fact that a(x), a(y), and a(z) are collinear that x, y, z also lie on a 
common line. 

Finally we show that a acts bijectively on the set of lines: The line 9'l + i has 
as preimage the line 9'l + (i - 1); hence a is surjective. Since any two lines q, + i 
and ill + j are mapped onto 9'l + (i + 1) and g) + (j + 1), a is also injective, be­
cause from ill + (i + 1) = ill + (j + 1) it follows that i + 1 = j + 1, hence i = j. 0 
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Interestingly the converse of the above theorem is also true. 

2.S.5 Theorem. Let P be a finite projective plane of order n that has a col­
lineation cr of order n2 + n + I such that the group of collineations generated 
by cr permutes the points of P as well as the lines in a cyclic way. Then there 
exists a difference set 91 of order n such that P = P(91). 

Proof Let Q be an arbitrary point and g an arbitrary line of P. Since any point 
of P has the form cri(Q), there are exactly n + I integers d such that crd(Q) is 
a point of g. We define the set 91 to consist of exactly those numbers: 

IJ) = {d I crd(Q) E g}. 

We claim that 91 is a difference set. For this we have to show that for any positive 
integer z with z ~ n2 + n there is exactly one pair d, d' E 91 with z = d' - d: 

Since Q and Q' = crZ(Q) are distinct points, there is exactly one line h 
through Q and Q'. Therefore, by hypothesis, there exists ayE {O, 1, ... , 
n2 + n} with 

h = crY(g). 

Since Q, Q' are incident with h, there are points P, P' on g such that 

Q = crY(P), Q' = crY(P'). 

By definition of 91 there are d, d' E IJ) with 

P = crd(Q), P' = crd'(Q). 

This implies on the one hand that 

Q = crY(P) = crY(crd(Q)) = crY + dCQ), 

and therefore 

y+d=n2+n+ 1. 

On the other hand it follows that 

Q' = crY(P') = crY(crd'(Q) = crY + d'(Q) = crn2 + n + I-d+d'(Q) = crd'-d(Q). 

Since Q' = crZ(Q), we have that z = d' - d with d, d' E IJ). 
We leave it as an exercise for the reader to show that there is only one such pair 

(d, d') and that P is isomorphic to P(IJ) (see exercise 26). 0 

Remarks. (a) In Theorem 2.S.5 one hypothesis was that the group of collineations 
generated by cr acts transitively on the points and on the lines. One can weaken 
this hypothesis by showing that a group of collineations of a finite projective 
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plane acts transitively on the points if and only if it acts transitively on the lines 
(Dembowski-Hughes-Parker theorem, see for instance [HuPi73], p. 257). 
(b) In Chapter 6 we shall prove the theorem of Singer that any finite Desarguesian 
projective plane has a collineation cr as described above (see 6.2.2 and exercise 1 
of Chapter 6). Then it follows that any finite Desarguesian projective plane can be 
described using a difference set. 

Exercises 

1 Draw the theorem of Desargues. Is it possible that the point C lies on the line 
through the points P lb P23, and P31 ? 

2 Draw the theorem of Pappus. 

3 Draw on a sheet of paper two lines g and h that are not parallel, but do not 
intersect on the sheet. For an arbitrary point X on your sheet, construct, us­
ing the theorem of Pappus, the line through X and g n h. 

4 Is the projective plane constructed in exercise 4 of Chapter 1 of the form 
P(V)? [Hint: What would be the field F?] 

5 The theorem of Fano (Gino Fano (1871-1952) reads as follows: if the 
points PI, P2, P3, P 4 of a projective plane form a quadrangle, then the points 

Q, := P IP4 n P2P3, Q2:= P2P4 n PIP3, and Q3 := P3P4 n P 1P2 

are on a common line. 

Show: in P(V) the theorem of Fano is true if and only if in F the equation 
1 + 1 = 0 holds, i.e. if F has characteristic 2. 

Figure 2.13 The theorem of Fano 
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[Historical remark. Fano studied 'foundations of geometry' - an axiomatic 
treatment of Euclidean geometry. In this context he of course required not the 
'theorem of Fano', but its converse, namely that the points Q). Q2, Q3 are 
not collinear. His observation was that one cannot prove the corresponding 

statement, but has to require it axiomatically.] 

6 Imagine how difficult it would be to prove the theorem of Pappus using in­

homogeneous coordinates. 

7 Consider a projective plane P represented by homogeneous coordinates. The 

points are therefore of the form (al: a2: a3), where the elements ai are taken 
from a field F. Express the fact that three given points are on a common line 
in term of the determinant of the 3x3 matrix whose rows are the coordinates 

of the points. 

8 Generalize the preceding exercise to the 3-dimensional (n-dimensional) space. 

9 In a projective plane described by homogeneous coordinates, by 2.3.4 any 
line can be represented by a triple [b l : b2: b3], (b}. b2, b3 E F). Express the 
fact that three lines pass through a common point by using a determinant (cf. 

exercise 7). Prove your assertion. 

10 Generalize the preceding exercise to the 3-dimensional (n-dimensional) space. 

11 Let P = (u), Q = (v), R = (w) be three noncollinear points of a projective 
plane P(V). Let P' = (v + aw) be a point on QR, Q' = (w + bu) a point on 
RP, and R' = (u + cv) a point on PQ. Prove the theorem of Menelaus 

(Menelaus of Alexandria, about 100 B. C.): 
the points P', Q', R' are collinear if and only if abc = -I (see Figure 2.14). 

Figure 2.14 Theorem of Menelaus 

12 Let P = (u), Q = (v), R = (w) be three noncollinear points of a projective 
plane P(V). Let P' = (v + aw) be a point on QR, Q' = (w + bu) a point on 
RP, and R' = (u + cv) a point on PQ. Prove the theorem of Ceva (Giovanni 

Ceva (1647 or 1648-1734»: 
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the lines PP', QQ', RR' pass through a common point if and only if abc = 1 
(see Figure 2.15). 

Figure 2.15 Theorem ofCeva 

Remark. This theorem was already stated and proved by AI-Mu'taman (who 
died in 1085), an Islamic king of Zaragoza (in northeastern Spain), in his 
Book of Perfection (cf. [Hog94]). 

13 Let V be a vector space over the division ring F. 

(a) If (u) is a point on the line (v, w) of P(V) then there exists atE F 
such that 

(u) = (tv + (l - t)w). 

(b) If F is commutative then t is uniquely determined. 

14 Let V be a (d + I)-dimensional vector space over the field F. Let HI and 
H2 be two hyperplanes of the projective space P = P(V) = PG(d, F), and let 

H), H2 be the subspaces of V with P(Hi) = Hi' Show the following asser­
tions: 

(a) There exists a linear map of V that maps HI onto H2. 

(b) There exists a collineation of P that maps H I onto H2. 
(c) The affine spaces P \H I and P \H2 are isomorphic. 

15 Let U be a subspace of the vector space V. Show that the I-dimensional 

subspace (v + U) of the factor space V IU consists of all vectors of the sub­
space (v) + U = (v, U) of V. 

16 Let V be a (d + I )-dimensional vector space, and let Q = (w) be a point of 
P(V). Then the quotient geometry P(V)/Q is isomorphic to P(V I(w», 
where V I(w) is the factor space of V modulo (w). 

17 (a) Let P and Q be two points of the Moulton plane that are not connected 
by an 'unbent' line (then, w.l.o.g., P is on the left-hand side and Q on the 
right-hand side of the y-axis, and P is 'above' Q). Show that the line of the 
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Moulton plane connecting P and Q can be constructed as follows (see Fig­
ure 2.16): 

.-----~-------

.. 
:y 

Figure 2.16 Construction of a Moulton line 

Let h be the line through Q that is perpendicular to the y-axis, let F be the 
foot of that line, and let Q' the point with the property that Q is the mid­
point of F and Q'. Finally, let S be the intersection of the line PQ' with 
the y-axis. Then the Moulton line through P and Q is the line that coin­
cides left of the y-axis with PS and right of the y-axis with SQ. 
(b) Use (a) in order to show that any two points of the Moulton plane are 
joined by exactly one line. 

18 Show that the Moulton plane satisfies Playfair's parallel postulate. 

19 Show that in the Moulton plane the theorem of Pappus does not hold univer­
sally. 

20 Why does one, in constructing the Moulton plane, not bend all lines at their 
intersection with the y-axis? 

21 What does not work if one tries to generalize the construction of the Moulton 
plane to the 3-dimensional real space? (One would bend all lines with 
'negative slope' at the (y, z)-plane by a factor 2.) 

22 Prove Theorem 2.8.2 (theorem of de Bruijn and Erdos). 
[This exercise is difficult and needs some time, cf. [BaBe93].] 

23 (a) Prove that there is no finite linear space with b = v + 1 in which all lines 
are incident with the same number of points. 
(b) Determine all finite linear spaces with b = v + 1. 

24 Construct examples of difference sets of orders 5, 7, and 8. 

True or false? 93 

25 Draw in a way analogous to Figure 2.12 communication systems having 13, 
21, and 31 participants, respectively. 

26 Complete the proof of2.8.5. 

True or false? 

o Homogeneous coordinates determine a point uniquely. 

o Inhomogeneous coordinates determine a point uniquely. 

o Every projective space can be described as a space P(V). 

o Every projective space that is not a projective plane can be described as a 
space P(V). 

o If the theorem of Desargues holds in P it also holds in P\H. 

o Three points in a projective plane that is described by homogeneous coordi­
nates form a triangle if the matrix of its homogeneous coordinates is non­
singular. 

o Four points in a projective plane that is described by homogeneous coordi­
nates form a quadrangle if the matrix of its homogeneous coordinates is non­
singular. 

o A hyperbolic quadric is uniquely determined by any three skew lines con­
tained in it. 

o In the Moulton plane there is no configuration of points for which the theo­
rem of Desargues holds. 

o One obtains an example of a non-Desarguesian affine plane, if one bends all 
lines with negative slope of the real affine plane at the x-axis by a certain 
factor. 

o Every finite linear space has a line with just two points. 

o For any pair (v, b) of positive integers there is a linear space with v points 
and b lines. 

You should know the following notions 

P(V), geometric dimension vs. vector space dimension, PG(d, K), PG(d, q), 

AG(d, K), AG(d, q), theorem of Desargues, theorem of Pappus, theorem of Fano, 
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homogeneous coordinates, inhomogeneous coordinates, 16 point theorem, regu­
Ius, hyperbolic quadric, points in general position, normal rational curve, Moulton 
plane, linear space, difference set. 3 The representation theorems, 

or 
good descriptions of projective and 
affine spaces 

This chapter provides the connection between synthetic and analytic geometry. In 
the second chapter we have introduced the spaces P(V) as examples of projective 
spaces. The question is whether these are nearly all the projective spaces or 
whether they provide only a small percentage of all projective spaces. 

The aim of analytic geometry is to describe 'the geometry' using coordinates. 
So one has to prove that there are no other geometries. We shall show that this is 
true if and only if the projective space under consideration is Desarguesian, hence 
in particular if it is not only a plane. 

This chapter belongs to the classical part of projective geometry. However, we 
will use nearly nothing of it in the next chapters. If you are a quick reader it is 
sufficient to look only at the representation theorems in Sections 3.4 and 3.5 and 
later on enjoy the beautiful parts of this chapter. 

3.1 Central collineations 

We always denote by P a projective space of dimension d ~ 2. 
Our aim is to construct - with the help of the theorem of Desargues - a vector 

space V such that P(V) = P. For this we have to construct a division ring F. It 
will be composed of collineations (automorphisms) of P. Therefore our first aim 
must be to construct - using the theorem of Desargues - lots of collineations of P. 

We recall: a collioeatioo of P is a bijective map from the point set and line set 
of P ooto themselves that preserves incidence. 

Clearly, the set of all collineations of P forms a group with respect to compo­
sition of maps (see exercise 1). 



96 3 The Representation Theorems 

3.1.1 Lemma. Let a be a collineation of P. Thenfor any two distinct points X, 
Y of P we have 

a(XY) = a(X)a(Y). 

Proof Since a is a collineation, all points incident with the line g = XY are 
mapped onto the image g' of the line g. Since a(X) and a(Y) are on g', neces­
sarily g' = a(X)a(Y). 0 

The collineations that are important for our purposes are not just arbitrary col­
lineations, but central collineations. 

Definition. A collineation a of P is called a central collineation if there is a 
hyperplane H (the axis of a) and a point C (the centre of a) with the follow­
ing properties: 

every point X of H is a fixed point of a (that is a(X) = X); 
- every line x on C is a fixed line of a (that is a(x) = x). 

We remark that the image of every point on a fixed line g lies on g; but this does 
not mean that every point on g is a fixed point. 

Example. Each reflection in the real affine plane is a central collineation in the 
corresponding projective closure. The axis g of the reflection a is also the axis 
of the corresponding central collineation since every point on g is fixed. What is 
the centre of a? In order to see this we observe that each line orthogonal to g is 
fixed under a. Hence the point C at infmity that is the intersection of all lines 
orthogonal to g is the centre of a. 

Similarly one can prove that each point reflection at the point C is a central 
collineation with centre C and the line at infinity as axis (see exercise 2). 

3.1.2 Lemma. Let H be a hyperplaneand C a point of P. Then the set of cen­

tral collineations with axis H and centre C is a group with respect to composi­
tion of maps. 

Proof Let r be the set of all central collineations with axis H and centre C. 
Clearly, r is nonempty, since the identity is contained in r. 
Furthermore, r is closed under composition since the product of any two ele­

ments a, 13 E r fixes every point of H and every line through C, hence is an 
element of r. 

Finally, for each a E r, the inverse collineation a-I is also an element of r: 
since aa-I = id, a-I must also fix every point on H and every line through cn 
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3.1.3 Lemma. Let a be a central collineation of P with axis H and centre C. 
Let P "# C be a point not on H and let P' = a(P) be the image of P. Then a is 
uniquely determined. In particular, the image of each point X that is neither on 
H nor on PP' (= PC) satisfies 

a(X) = CX n FP', 

where F = PX n H (see Figure 3.1). 

Proof In view of the definition of a central collineation the image X' = a(X) of a 
point X is determined by the following restrictions: 
- On the one hand, the line CX is mapped onto itself (as is any line through C); 
since a is a collineation the point X' is on a(CX) = CX. 
- On the other hand we consider the point F:= PX n H. Being a point of the 
axis H it is fixed by a. Using 3.1.1 it follows that 

X' = a(X) I a(PX) = a(FP) = a(F)a(P) = FP'. 

.--

Figure 3.1 Uniqueness of a central collineation 

Since X is not on PP', F is not on CX. Hence X' is the intersection of the two 
distinct lines CX and FP'. Thus X' is uniquely determined. 

It now follows that the image of each point Y on CP is also uniquely deter­
mined: Replace (P, P') by a pair (R, R') with R'"# R and R ~ CP. Then it fol­
lows that Y'= CY n F*R' (with F* = RY n H) is uniquely determined. 0 

3.1.4 Corollary (uniqueness of central collineations). Let a be a central co/­
lineation of P with axis H and centre C that is not the identity. Then we have: 
(a) If P is a point "# C not on H then P is not flXed by a. 
(b) The central collineation a is uniquely determined by one pair (P, a(p» 
with p"# a(P). 
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Proof (a) Assume that the point P is fixed by a. We show that then each point 
X is fixed by a. First, let X not be on the line CP. Then, using the notation of 
3.1.3 we have that a(X) = CX n FP' = CX n FP = X since X is on FP. 

Using a (fixed) point Xo outside PC we now see that each point on PC is 
also fixed by a. Hence a is the identity, contradicting the hypothesis. 
(b) follows directly from 3.1.3. 0 

Remark. The above corollary is extremely useful, and we shall often apply it. 

In fact, we shall often have the following situation (see for instance 3.2): We 
consider central collineations with the same axis H such that their respective 
centres lie on H (we shall call those central collineations 'translations'). In order 

to show that two such central collineations a and f3 are equal, we are not forced 
to show for every point X that a(X) = f3(x), but it suffices to show this for just 

one point Xo ~ H. (If Xo' := a(Xo) = f3(Xo} then the centre of a and f3 is the 
point XoXo' n H, and the desired equality follows from 3.1.4.) Shortly: if trans­
lations agree on one 'affine' point then they are equal. 

3.1.5 Corollary. Axis and centre of a central collineation a"# id of Pare 
uniquely determined. 

Proof First we show that a cannot have two distinct axes H and H'. Otherwise 
any of the (at least two) points of H'\H would be fixed by a, contradicting 
3.1.4(a). 

Assume that a has two centres C, C'. Consider a point P outside the axis H 
and the line CC'. Then P' = a(P) satisfies 

P'I PC and P' I PC', 

hence P' = P contradicting 3.1.4(a). o 

Definition. Let a"# id be a central collineation of a projective space P. We call 
a an elation if its centre is incident with its axis and a homology if centre and 

axis are not incident. The identity is considered as homology and as elation. 

3.1.6 Lemma. Let P be a projective space, and let a"# id be a central collinea­
lion with centre C and axis H. If U is a subs pace of P with C E U but U (£. H . 
then the restriction of a to U is a central collineation, which is not the identity. 

Proof Since C E U, the subspace U is mapped by a onto itself. Hence the re­
striction a' of a to U is a collineation of U. Since a' has the point C as its 
centre and Un H as its axis it is a central collineation. Since U (£. H, a' is not 
the identity. 
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Remark. In the situation of Lemma 3.1.6 one says that a induces a central col­
lineation of U. In 3.1.10 we shall see that each central collineation of a subspace 
is induced by a central collineation of the whole projective space. 

For our purposes the theorem of Baer (see 3.1.8) is crucial for it relates the theo­
rem of Desargues to the existence of central collineations. 

In order to show this theorem we need the following general lemma on the ex­
tendibility of collineations. 

3.1.7 Lemma Let P be a projective space of dimension of at least 2, and let go 

be a line of P. Let P' be the rank 2 geometry consisting of the points P that are 
not on ~ and the lines of P that are different from go. 

Let a be a collineation of P'. Then a can be uniquely extended to a col­
lineation a* of P. This collineation a* flXes the line go. 

Proof We first show the following assertion, which will imply everything: Let g 
and h be two lines that intersect go in the same point P. Then the lines g' = 

a(g) and h' = a(h) also intersect each other in a point P' of go. 

This can be shown as follows. Since a preserves the incidence of P' the lines 
g' and h' also have no point of P' in common. We have to distinguish two cases. 
Case 1. The order of P is bigger than 2. 

Then there are a point Q in P' and two lines m and n through Q that inter­
sect each of the lines g and h in two distinct points. 

The collineation a maps m and n onto two lines m' and n' that pass 
through a common point Q' of P' and intersect each of the lines g' and h' in 

distinct points. So g' and h' lie in a common plane of P (namely in the plane 

spanned by m' and n'), hence these lines intersect each other in a point P. Since 
they have no point of P' in common, they must intersect in a point go. 
Case 2. The order of P is 2. 

The critical situation is when go, g, and h lie in a common plane; for then 

these lines cover all points of that plane, and we cannot find a point Q as above. 
However, if g, h, and go are not in a common plane then there is a point Q 

and there exist two lines m, n through Q that intersect each of the lines g and 

h in distinct points. We may proceed as in the first case. 
But if g, h, and ~ lie in a common plane then we again have to distinguish 

two cases. If P is only a plane then one can directly verify the assertion (see ex­
ercise 13). If P is not only a plane then there exists a line I through the point P 
= g n h n go that is not contained in the plane spanned by g and h. Then we 
apply our results obtained so far to the pairs (I, g) and (1, h): Since I, g, and go 
are not in a common plane, the lines I' and g' pass through a common point of 
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go. Similarly, l' and h' contain a common point of go. These points coincide 
since both are equal to the intersection of I and ~. Therefore, g' and h' also 
pass through the same point of go. 

Thus we have proved our claim. 

From this we infer the following: For a point P on ~ let §p be the set of 
lines of P' through P. Then there is a point P' on go such that all images of the 
lines of §p pass through P'. In other words, a(§p) = (§p.). 

Now we define a * in such a way that the restriction of a * to P' is a, that 
a(go) = go, and that for each point P on go we have a*(P) = P'. Then the above 
considerations imply not only that a* is the only possible extension of a to P, 
but also that the map a* is in fact a collineation. 0 

Now we are ready to prove the theorem of Baer. 

3.1.8 Theorem (existence of central collineation, [Baer42]). If in the projective 
space P the theorem of Desargues is valid we have: if H is a hyperplane and 
C, P, P' are distinct collinear points of P with P, P' ~ H, then there is precisely 
one central collineation of P with axis H and centre C mapping P onto P'. 

Figure 3.2 Existence of a central collineation 

Proof The uniqueness of the central collineation has already been proved in 
3.1.4(b). Thus, the central part is the existence of the central collineation. In es­
sence, the theorem of Baer reads as follows: in a Desarguesian projective space 
there exist 'all possible' central collineations. 

In order to show the existence of the central collineation in question we pro­
ceed as follows. We consider the rank 2 geometry P' that consists of the points of 
P not on CP and the lines of P that are different from CP. We shall define a 
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map a and show that this is a collineation of P'. Then Lemma 3.1.7 implies that 
a can be extended to a collineation of P. 

Definition of the map a: Each point of H is fixed by a. For a point X out­
side H define X' := a(X):= CX n FP', where F = XP (\ H. 

The main part of the proof consists in showing that a is a collineation of P'. 
For this we first show that a is a bijective map of the point set of P' onto itself. 

To show that two different points Xl and Xz have different images we may 

suppose that they are not on H. If X 1> Xl> and C are collinear then the points 
F I := X1P (\ H and F2 := X2P (\ H are distinct. Hence a(X1) and a(Xz) are 
two distinct points on the line through C, Xl> X2. If Xl> Xl> and C are not col­
linear then a(X1) and a(X2) are distinct since a(X1) is on CX l and a(Xz) is 
on CX2. Hence a is injective. 

The map a is suIjective since the point Y 0 := CY n FP ,where F:= YP' (\ H 
is a preimage of Y. 

We now show that any three collinear points are mapped onto collinear points; 
then a is a collineation (see exercise 26 in Chapter 1). For this we first prove the 
following claim: 
for any two points X and Y of pI, the lines XY and X'V' intersect each other 
in a point of the axis H. 

We may suppose that X, Y ~ H. In order to verify the claim, we consider once 
more the construction of X' and Y': 

First we deal with the 'trivial' case that P, X, Y are collinear (see Figure 3.3). 
Then X' and Y' are also on the line through F:= PX (\ H and P'; hence P', X', 
Y' are collinear. In particular, XY = PX and X'V' = X'P' intersect in the point F 
of H. 

Figure 3.3 Construction of a central collineation 
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Now we study the 'general' case where X, Y, and P are not collinear (see Figure 
3.4). Then the points F I := PX (1 H and F2:= PY 11 H are distinct. Since pt is 
not a fixed point it does not lie in H, thus the lines F I pt and F 2pt are distinct. 

H 

Figure 3.4 Application of the theorem of Desargues 

So Xt, Y', P' are also noncollinear, and therefore the triangles X, Y, P and X', 

Y', P' satisfy the hypothesis of the theorem of Desargues (with centre C). 
The theorem of Desargues, applied to these triangles, says that the points F I, 

F2, and XY (1 X'Y' (the point we are looking for!) are collinear. In particular, 

XY (1 X'V' lies on H. 
Now it follows that a is a collineation: Let X, Y, W be three points on a line 

g, and let X', Y', W' be their images under a. In view of the above claim, Q := 

XY 11 X'V' = g (1 X'Y' is a point of H. Moreover, Y' lies on g' := QX'. 
Now XW (1 X'W' = g (1 X'W' is also a point of H, and this must be the inter­

section of g and H, hence it is the point Q. This means that X'W' = X'Q = g'. 
So W' also lies on QX' = g'. Therefore all three images lie on a common line, 

and thus a is a collineation of p'. 
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By Lemma 3.1.7 we can extend a to a collineation a* of P. It remains to 
show that a * is a central collineation. By construction, H is an axis of a *. Why 
is C the centre of a*? Must a* necessarily have a centre? The next lemma an­
swers these questions. 0 

Remark. The above theorem goes back in its general form to R. Baer [Baer461, but 
was in essence known earlier; for instance, the case d = 3 can be found in Veblen 
and Young ([VeYo16], §29, Theorem 11). 

3.1.9 Lemma. Let a be a collineation of P such that there is a hyperplane H 
with the property that each point of H is fixed by a. Then there exists a point C 
of P such that each line through C is fixed by a. Shortly: each axial collinea­
lion is central. 

Proof If there is a point C ~ H with a(C) = C then C is a centre: for each line 
through C can be written as CP with P E H, and it follows that 

a(CP) = a(C)a(P) = CP. 

Now we consider the case that no point outside H is fixed by a. In order to find 
the centre we consider an arbitrary point P ~ H. Then the line Pa(p) is fixed by 
a. For let C := Pa(P) (1 H. Then 

a(Pa(P» = a(PC) = a(P)a(C) = a(P)C = a(P)P. 

We claim that the point C considered above is the centre of a. For this, we have 
to show that each line g through C is fixed by a. We may suppose that g is 
not in H. 

Claim: For each point Q !i!: H. Q !i!: Pa(P) the line Qa(Q) passes through the 
point C := Pa(P) 11 H. 

For let S := PQ (1 H. Then 

S = a(S) I a(PQ) = a(P)a(Q). 

Hence the points S, P, Q, a(P), a(Q) are contained in a common plane n. There­
fore, the lines Qa(Q) and Pa(P) intersect in some point X of n. Since the lines 
Qa(Q) and Pa(P) are fixed by a, the point X satisfies 

a(X) = a(Pa(P» (1 a(Qa(Q» = Pa(P) 11 Qa(Q) = X. 

Therefore X lies in H, thus it must coincide with the point Pa(P) (1 H = C. 
Hence all lines of the form Qa(Q) pass through C. Thus each line through C 

~~~~ 0 
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A simple application of the theorem of Baer is the converse of Lemma 3.1.6. 

3.1.10 Theorem. Let P be a Desarguesian projective space of dimension d ~ 2. 
Then each central collineation a * of a subs pace U of P is induced by a central 
collineation of P. More precisely, for each point P ~ U there is a central col­

lineation of P whose axis passes through P and induces a*. 

Proof Let C be the centre and H* the axis of a *. Let H be a hyperplane of P 

through P such that H (1 U = H* . 
Consider an arbitrary point Q of U with Q:oF C and Q ~ H*; let Q' = 

a*(Q). By the theorem of Baer there is a central collineation a of P with centre 

C and axis H that maps Q onto Q'. 
Let a' be the central collineation of U that is induced by a (cf. Lemma 

3.1.6). Since a' and a* share the same centre and the same axis and map Q 
onto Q' it follows that a' = a*. Hence a* (= a') is induced by the central col­

lineation a of P. 0 

3.2 The group of translations 

In this section we are carefully approaching the vector space that coordinatizes P. 
First we shall study a group which later on will turn out to be the additive group of 

the vector space we aim for. 
One basic idea is to consider only an affine space. The main work will be to 

show that any Desarguesian affine space A = P\H can be coordinatized by a 
vector space. From this, the coordinatization of projective spaces will follow rela­

tivelyeasily. 
The following theorem says that one does not lose much information if one 

considers only affine spaces. 

3.2.1 Theorem. Let a be a collineation of the affine space A = P\H. if the or­

der of P is greater than 2 then there is precisely one collineation of P such that 

its restriction to A is a. Shortly, a has precisely one projective extension. 

Proof First we show that a has at most one extension to a collineation of P: Let 
a* and a+ be extensions of a. Then 13:= a+a*-l is a collineation of P, which 
fixes each point and each line of A. Since each line of A and the hyperplane at 
infinity are fixed, 13 also fixes each point at infinity. It follows that 13 = id, hence 
a* =a+. 

The existence is more difficult to show. We first prove the following 
Claim: if g and hare parallel lines then a(g) and a(h) are also parallel. 
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For we may suppose that g:oF h. Then the images of g and h also have no 
point in common - but they could be skew! Therefore we have to argue a bit more 
SUbtly. Since g and h are parallel they are contained in some plane 1t. We have 
to show that the images of g and h also lie in a common plane. 

Since the order of P is greater than 2 there is a point P in 1t that is neither on 
g nor on h. Let I and m be two lines in 1t through P that are not parallel to g. 
Then the lines 1 and m both intersect g and h. 

By a the lines I and m are mapped onto two lines a(l) and a(m) that in­
tersect each other and intersect the images a(g) and a(h) of g and h. Thus 
a(g) and a(h) lie in the plane (a(l), a(m» and are therefore parallel. 

We now define an extension a* of a in P as follows. For PEA = P\H de­
fine a*(P) = a(P). For P E H let g be a line through P that is not in H. We 
define a*(P) = a(g) (1 H. Since g is an affine line a(g) is welldefined. 

We have to show that a* is welldefrned: If g and h are two lines through P 
that are not in H then they are parallel as lines of A. By our claim, a(g) and 
a(h) are also parallel, hence they intersect each other in a point of H, namely in 
a*(P). Thus a* is welldefined. 

The map a* acts bijectively on the point set of H since a is bijective on the 
line set of A. 

In order to show that a* is a collineation it is sufficient to show that a* 
maps collinear points onto collinear points. This is clear for points of A, and also 
if only one of the points lies in H. Let PI, Plo P3 be three collinear points in H. 
Consider an arbitrary point X E A. Then 1t = (X, PI> P2, P3) is a plane. By defi­
nition of a*, a*(1t) is a plane that intersects H in a line containing the points 
a*(Pl), a*(P2), a*(P3)· Therefore these points are collinear. 0 

Remark The existence part of 3.2.1 does not remain true if the order of P is 2; 

see exercises 13 and 14. However, if a collineation also preserves the planes of A, 
it can be extended to a collineation of P (see exercise 15). 

For the remainder of this chapter we suppose that P is Desarguesian. 

Furthermore, we distinguish a hyperplane H. Then the theorem of Desargues also 
holds in the affine space A = P\H. 

Definition. We denote the set of all central collineations with axis H and centre 
on H by T(H). (In the affine space A = P\H the elements of T(H) are the 
translations; this is the reason for the letter T.) 
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3.2.2 Theorem. For each hyperplane H of P, T(H) is an abelian group, which 
acts sharply transitively (regularly) on the points of P\H. This means: for any 
two points P, Q of P\H there is precisely one a E T(H) such that a(P) = Q. 

In particular, the identity is the only element of T(H) that fixes a point of P\H 

Proof First we show that T(H) acts transitively on the points ofP\H. Let P and 

Q be two points of P\H, w.l.o.g. P "* Q. If P is mapped by a translation onto Q 

then the centre of this translation is the point C:= PQ (\ H. Since by the theorem 
of Baer (3.1.8) there is precisely one central collineation with axis H and centre 

C mapping P onto Q, the set T(H) even acts sharply transitively on the points 
of P\H. 

Now we show that T(H) is a group. We know that the set of all collineations 
of P is a group \\'ith respect to composition of maps (see exercise 1). Thus we 
have only to show that T(H) is a subgroup of the group of alI collineations. 

Since T(H) is nonempty, we only have to show that for any two elements a 

and 13 of T(H) the collineations a-I and al3 are also in T(H). Let a and 13 
be arbitrary elements of T(H). Then each point of H is fixed by a-I and by 
al3. So, by 3.1.9, a-I and al3 are central collineations. W.l.o.g. we may suppose 

that a"* id. Then a fixes no point of P\H, hence a-I also fixes no point of 
P\H. In particular, the centre of a-I is in H, so a-I E T(H). We may suppose 

that al3"* id. We have to show that the centre of al3 is on H: Assume that some 
point P ~ H is fixed by al3. Then I3(P) = a-I (P), hence by 3.1.4(b) also 
13 = a-I, and so al3 = id. 

Finally we show that T(H) is abelian. Let ab a2 be arbitrary elements of 

T(H). We have to show that a1a2 = a2al' Observe that in view of 3.1.4(b) we 
have to verify for only one point X ~ H that a 1 a2(X) = a2a I (X). 

We may suppose w.l.o.g. that al and a2 are not the identity. Let C j and C2 
be the centres of a1 and a2' 

Case 1. Cl "* C2 . 

Figure 3.5 Commutativity of translations 
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Let X be an arbitrary point of P\H. Consider the points X, a2(X), al(X), and 
a2(al(X». Since a2(aj(X» is the image of a\(X) under a2 the point 
a2(al(X» lies on the line C2aj(X). Moreover, we have 

Cl = a2(C I) I a2(Xal(X» = a2(X)a2(al(X», 

Thus the point a2(al(X» is also incident with Cla2(X) (see Figure 3.5). Simi­
larlyone sees that the point al(a2(X» is incident with C2al(X) as well as with 

C 1a 2(X). Therefore, ala2(X) = aj(a2(X» = a2(al(X» = a2al(X). As we have 
observed above, this implies that ala2 = a2a l' 
Case 2. Cl = C2. 

Consider a point C3 "* Cl and an a3 E T(H), a3 "* id, with centre C3. Since 

the translations with centre C I form a group a I a3 also has centre "* Cl' By 
case 1 we get 

a2a 3 = a3a 2 and a2(ala3) = (ala3)a2' 

From these results together it follows that 

(ala2)a3 = a\(a2a 3) = al(a3a 2) = (ala3)a2 = a2(ala3) = (a2aj)a3, 

hence ala2 = a2al' o 

Definition. We now arbitrarily distinguish a point 0 of P\H. In view of 3.2.2 

we can identify each point P of P\H with a translation of T(H), more precisely 
with the element "tp E T(H) that maps 0 onto P. In other words,"tp is the 
uniquely determined translation that maps 0 onto P. For instance, one has 'to 
= id and 'tp(O) = P for each point P. 

This definition enables us to 'add' two points of P\H; we define 

P + Q := 'tp(Q) = "tp('tQ(O». 

3.2.3 Theorem. The set 9>* of the points of the affine space P\H is, with the 
above defined addition +, a group, which is isomorphic to (TCH), 0). 

Proof We define the map f: 9>* ~ T(H) by f(P):= 'tp. In view of 3.2.2, f is a 
bijective map. It remains to show that f(P + Q). = f(P)of(Q) for all points P, Q E 

9>*. By definition of addition of points we have 

f(P + Q) = "tp + Q = "t-rp{Q). 

So f(P + Q) is the translation that maps 0 onto the point "tp(Q). 

What is the image of 0 under f(P)of(Q) = 'tp"tQ? Well, 'tQ maps 0 onto Q, 
and then this point is mapped onto "tp(Q). Thus, the translations f(P + Q) and 
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f(P)of(Q) map 0 onto the same point. Hence these translations are equal (cf. the 
remark after 3.1.4). In other words, 

f(P + Q) = f(P)of(Q). 0 

In particular we note the useful equation 

Lp + Q = LPLQ. 

By 3.2.3 we see also that each point P has a 'negative point' -P, namely the 
point Lp-l (0). Since Lp-l is (like Lp) a translation with centre P*:= OP (\ H 

the point -P lies on the line OP* = OP. 

Remark. One can obtain the sum of two points in the following geometric way: 
For a point P * 0 of P\H we denote by p* the point PO (\ H. Then, if the 
points P, Q, and 0 are not collinear, the sum P + Q can be obtained in the fol­

lowing extremely simple way (see Figure 3.6): 

P + Q := P*Q (\ PQ*. 

This can be seen as follows. Obviously p* is the centre of Lp, hence P + Q = 

Lp(Q) lies on the line QP*. On the other hand, Lp maps the line OQ* onto PQ* 
since Q* is fixed by 'tp. Hence Lp(Q) is also incident with PQ*. 

The case that 0, P, Q are on a common line will be handled in exercise 19. 

H 

Figure 3.6 Sum of two points 

From an affine point of view, the lines OP and Q(P + Q), as well as the lines 
OQ and pep + Q), are parallel; thus the points 0, P, Q, P + Q form a 'parallelo­
gram'. Therefore we can express the above remark as follows. P + Q is the fourth 
point that completes 0, P, Q to a parallelogram. 
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Deimition. For a point P E H let T(P, H) be the set of all central collineations 
with axis H and centre P. 

Clearly, for each P E H the set T(P, H) is an (abelian) subgroup of T(H). Fur­
thermore, according to the above identification we may identify the elements of 
T(P, H) with the points of P\H on the line OP. This means that the lines 
through 0 are in a 1-10-1 correspondence to the subgroups T(P, H) of T(H). 

With the help of T(H) the affme space A = P\H can already be described 
very well. If we knew that T(H) is not only an abelian group, but also a vector 
space, we would have already the usual description of an affine space. This is the 
content of the following theorem. 

3.2.4 Theorem. The points of A form an abelian group, which we denote by T 
The lines through 0 are certain normal subgroups of T. 

The other lines are the cosets with respect to these subgroups on O. 

Proof The first assertion follows from theorem 3.2.3. In order to describe exactly 
what we have to prove, we introduce some notation. Let g be a line of A; we 

define 

T(g) = {'tp I PIg}. 

We have to show the following assertions. 
(a) If g is a line through 0 then we have T(g) = T(C, H), where C is the point 
at infinity of g. Conversely, for any subgroup of T(H) of the form TeC, H) there 
is a line g through 0 such that T(g) = T(C, H). 
(b) If g is a line not through 0 then 

T(g) = 'tpoT(C, H), 

where P is an arbitrary point of A on g and C is the point at infinity of g. 

Conversely, for each point P and each point C at infinity there is a line g such 

that 

T(g) = 'tpoT(C, H). 

These assertions are not difficult to prove. (a) Since the translations that fix g are 
exactly the translations with centre C, it follows that T(g) = T(C, H). 
(b) Let g be a line not through 0, let P be a point of A on g, and let 

C = g (\ H (see Figure 3.7). 

Claim: 

g = {P + X I X is an affine point of OC} =: P + oc. 



110 3 The Representation Theorems 

Figure3.7 g=P+OC 

For on the one hand each point of the form P + X (X E OC) is a point of g 
since in view of the remark after 3.2.3 X* = C implies that 

P + X = p*X n PX* = p*X n PC = p*X n g E g. 

On the other hand, let Q be a point of A on g. Then the point X := OC n P*Q 

is a preimage of Q under 'p. 
From this claim it follows by (a) that 

T(g) = {.p + X I X I OC} = {.po.x I X I OC} = 'poT(C, H). 

If, conversely, P is a point of A and C a point at infinity then for g = PC we 

have T(g) = 'poT(C, H). 0 

Remark In the following we shall use the notation g = P + OC, where C is the 

intersection of g and H. 

3.3 The division ring 

The aim of this section is to construct from a projective or affine space a division 
ring that will coordinatize the geometry. So far, we have used only the elations. 
Now homologies will play a key role. First we define the set that will form the 

division ring. 

Definition. By DO we denote the set of all central collineations of a projective 
space P with axis H and centre O. The elements of Do are also called dilata­

tions with centre 0; hence the notation. 
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Remarks. 1. It follows directly from the theorem of Baer, 3.1.8, that Do is a 
group, which acts sharply transitively on the points of each line of P \H through 
o that are different from O. 

2. What is the image of a line g = P + OC of P\H under cr E Do? Since 0 
and C are fixed by cr and the image must contain cr(P) we get the following 
assertion: 

cr(g) = cr(P) + OC 

(see also exercise 23). 

First we consider the element of Do that will play the role of -1. 

3.3.1 Lemma. Let )..I.: 9'* ~ 9'* be the map that is defined by 

)..I.:X~-x. 

This means that )..I. maps an arbitrary affine point X onto the point 
-X = 'x-ICO). Then )..I. (more precisely: its projective extension) is an element of 
Do (cf 3.2.1). 

Proof Clearly,)..I. is a bijective map. Furthermore,)..I. fixes the point O. By simple 
computation one obtains that )..I. maps the line g = P + OC onto the line 
-P + OC. For for each point X on OC the point -X is also on OX = ~C, 

therefore )..I.(P + X) = -(P + X) = -P + (-X) is a point of -P + ~C. Hence )..I. is a 
collineation of A. By 3.2.1 )..I. has a projective extension, which we shall also 
denote by )..I.. (If the order of P is 2, then )..I. is the identity.) 

Since along with P the point -P is also on OC,)..I. maps any line through 0 
onto itself. Hence, by exercise 8,)..1. is a central collineation with centre O. Since 
)..I. has no affine fixed point except 0, the axis of )..I. must be the hyperplane at 
infinity. So )..I. E Do· 0 

Remark. Every point X satisfies 

X+-X=O. 

For we have 

The elements of Do act on the point set 9'* of A. Thus the elements of Do 
also act on the elements of the group (9'*, +). The question is, how they act on 
this group. 
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3.3.2 Lemma. Each element of Do is an automorphism of (9>*, +). Moreover, 
we have that a 0 J.1 = J.1 0 a, that is a( -X) = -cr(X) for all a E Do and for all 
points X. 

Proof Let a be an arbitrary element of Do. Since it is clear that a acts bijec­
tively on 9>* we must show only that two arbitrary points X and Y satisfy 
a{X + Y) = a(X) + a(Y) (see Figure 3.8). 

Figure 3.8 The automorphism cr 

For this, we may assume that X, Y * O. 
First we suppose that X, Y, and 0 are not collinear. Since X + Y = 

Xy* n X*Y and a(X) + a(Y) = a(X)a{Y)* (\ a(X)*a(Y) we must show that 

a(XY* (\ X*y) = a(X)a(Y)* n a(X)*a(Y), 

which, since a is a collineation, means nothing else than 

a(X)a(Y*) (\ a(X*)a(Y) = a(X)a(Y)* (\ a(X)*a(Y). 

We know that a(X*) = X* since X* is a point of H. Similarly we get that 
a(Y*) = Y*. Moreover, a(X)* = X*, since a moves the point X on the line 
OX*. Hence OX and Oa(X) have the same point at infinity; in other words, X* 
= a(X)*. Since y* = a(Y)* follows similarly, the last equation is true, and there­
fore the assertion holds. 

Next we show that a(-X) = -cr(X) for each point X * O. For this, let P be a 
point not on the line OX. Since 0, X, and -X are collinear P + X is also not on 
O(-X). Using what we have already proved it follows that 
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so 

a{P) = a(P + X + (-X» 

= a(p + X) + a(-X) 

= a(P) + a(X) + a(-X), 

0= a(X) + a{-X), 

thus a(-X) = -cr(X). 

113 

Now we are also able to show that a(X + Y) = a(X) + a(Y) holds for points 
X, Y with 0 E XY. If Y = -X then this is the above statement. So we assume 
that Y * -x. Consider a point P !i!: XY. Then also -P!i!: XY. Moreover, since Y 
* X we have that 0, X + P, and Y - P are not collinear (see exercise 20). Using 
the first two parts of the proof it now follows that 

a(X + Y)= a(X + P- P+ Y) 

= a(X + P) + a(Y - P) 

= a(X) + a(P) + a(Y) + a(-P) 

= cr(X) + a(P) + a(Y) - a(p) 

= cr(X) + a(Y). o 

Now we define the addition in Do. The main work consists in showing that this 
operation is closed. This will be done in the following lemma. 

3.3.3 Main lemma. Let aI> a2 E Do. We define the map a) + a2 of 9>* in 9>* 
by 

(a) + (2)(X) := a)(X) + a2(X). 

If aI + a2 is not the zero map (the map that maps each point of A onto 0) then 
the projective extension of aI + a2 is an element of Do. 

Proof We define a := a) + a2' The beginning is easy. 

Step 1. We have a(O) = 0 and a(X + Y) = a(X) + a(Y) for all X, YE 9>*. 
For a(O) = (a) + (2)(0) = a) (0) + a2(0) = 0 + 0 = O. 

By 3.3.2 we have that alX + Y) = alX) + alY) (i = 1,2); hence 

a(X + Y) = (a) + (2)(X + Y) = aI(X + Y) + a2(X + Y) 

= a)(X) + a)(Y) + a2(X) + a2(Y) 

= (a) + (2)(X) + (a) + (2)(Y) 

= a(X) + a (Y). 
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Step 2. If g = P + OC denotes a line, where C is a point on H, then 

O'(g) ~ O'(P) + Oc. 

For suppose first that P I Oc. Then 

O'(P) = 0' I (P) + cr2(P) E OC, 

since O'I(P) and 0'2(P) are points on OC. Hence each point of OC is mapped 

onto a point of OC. 

Now let g = P + OC be an arbitrary line, where P is not on Oc. Then, by 

Step 1, 

O'(g) = {O'(P + X) I X I OC} = {O'(P) + O'(X) I X I OC} 

~ {O'(P) + Y I Y I OC}. 

Step 3. If 0' is not injective then 0' is the zero map. 
Assume that 0' is not injective. Then there are distinct points X and Y such 

that O'(X) = O'(Y). This means that. 

(0'1 + 0'2)(X) = (0'1 + 0'2)(Y), 

so 

O'I(X) + 0'2(X) = O'I(Y) + 0'2(Y)' 

Since !-l E Do and since all elements of Do are automorphisms of (g>*, +) it 
follows that 

O'I(X - Y) = 0'1 (X) - O'\(Y) = 0'2(Y) - 0'2(X) = 0'2(Y - X) 

= 0'2 0 !-leX - Y) = !-l 0 0'2(X - V), 

since by 3.3.2 the automorphism !-l commutes with 0'2' Since X - Y *' 0 this 

implies 0'1 = !-l 0 0'2, hence 

where 0 denotes the zero map. 

Step 4. If 0' is injective then 0' E Do. 
Since 0' is injective we have O'(X) *' 0'(0) for each point X*' O. We consider 

an arbitrary point Xo with Xo *' O. 
Since O'(Xo) *' 0 Step 2 implies that cr(XO) E OXo. Hence by the theorem of 

Baer there is a a' E Do such that O"(Xo) = O'(XO). 
Claim: We have 0' = a', so in particular 0' E Do. 

For this we consider an arbitrary point Y E 9'*, where we first suppose that Y 

is not on OXo. Then 
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Y = OY (] [Xo + (Y - Xo)O], 

since Y - Xo I (Y - Xo)O. Therefore we have that 

O'(Y) ~ O'(OY) (] O'(Xo + (Y - Xo)O) ~ OY (] [O'(Xo) + (Y - Xo)O]. 

Since, on the other hand, in view of O"(Xo) = O'(Xo) it follows that 

O"(Y) = OY (] [O"(Xo) + (Y - Xo)O] = OY (] [O'(Xo) + (Y - Xo)O], 

we get O'(Y) = O"(Y). 
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From this we also obtain the assertion for points on OXo, if a point Yo out­
side OXo plays the role of Xo. 

Thus the lemma is proved. D 

3.3.4 Theorem. Let 0 be the zero map on 9'*. On the set F = Do u {O} we de­
fine as above an addition by 

and a multiplication as follows: 

if 0'1'0'2 E Do. 

if 0'1 = 0 or 0'2 = O. 

Then (F, +, .) is a division ring. 

Proof First we deal with the addition. The fact that F is closed under addition 
follows from 3.3.3. The associativity and commutativity of (F, +) can be reduced 
to the associativity and commutativity of (9'*, +). The neutral element is 0, and 

!-lOO' is the inverse - the negative element - of 0'. We shall simply write -er 
instead of !-lOO'. 

Multiplication: Since (Do, 0) is a group (F \ {O}, .) is also a group. 

Finally we have to show that the distributive laws hold. Let 0'1> 0'2, 0'3 E F. 
Then for each X E g>* we have 

0'1(0'2 + 0'3)(X) = 0'1«0'2 + 0'3)(X» = 0'1 (0'2(X) + 0'3(X» 

= 0'10'2(X) + 0'10'3(X) = (0'10'2 + 0'10'3)(X), 

and 

(0'1 + 0'2)0'3(X) = (0'1 + 0'2)(0'3(X» = 0'1 (0'3(X» + 0'2(0'3(X» 

= 0'\0'3(X) + 0'20'3(X)' D 
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3.3.5 Corollary. We define a multiplication with scalars on f.P* by 

cr· X := cr(X) for cr E F, X E f.P*. 

Then f.P* is a vector space over the division ring F. 

Proof We already know from 3.2.3 that (f.P*, +) is a commutative group. More­
over, F is a division ring, and, by 3.3.2, cr(O) = 0 and cr(X + Y) = cr(X) + cr(Y) 

for all cr E DO and all X, Y E f.P*. Finally, the equation (cr I + cr2)(X) = cr 1 (X) + 
cr2(X) follows from the definition of addition in Do. 0 

3.4 The representation theorems 

We can already describe the structure of A = P\H very well. We sum up what 
we have proved in the previous sections: 
- The set Do of all dilatations with centre 0 is, together with the zero map, a 
division ring F. 
- The set f.P* of the points of A is a vector space over F. 

3.4.1 First representation theorem for affine spaces. Let A = P\H be an affine 
space. If the theorem of Desargues is valid in A then there are a division ring F 
and a vector space V* over F such that 
- the points of A are the elements of V*, and 
- the lines of A are the cosets of the I-dimensional vector subs paces of V* . 

Proof Let F be as in 3.3.4; we define V* := f.P*. 
Each line g through 0 is of the form OP. Since, by the theorem of Ba er, Do 

acts transitively on the points of g that are different from 0 and g n H, the 
multiplicative group Do of the division ring F transforms each element of g 
different from 0 onto each other element of g that is different from O. Hence g 
is the I-dimensional subspace of V* spanned by P. 

Each line g not through 0 is of the form g = P + OX. Since OX 
I-dimensional subspace (X), the line g is the coset P + (X). 

Conversely, let (X) be a I-dimensional subspace of V*. Then we have 
{cr(X) I cr E K} = (OX). So the coset P + (X) is the line P + OX. 

is the 

(X) = 

o 

Our original aim was the algebraic description of projective spaces. Now, this 
offers only small technical difficulties. 
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3.4.2 First representation theorem for projective spaces. Let P = (fP, £, I) be a 
projective space of dimension at least 2. If P is Desarguesian, then there is a 
vector space V over a division ring F such that P is isomorphic to P(V). 

In short, the Desarguesian projective spaces are precisely the geometries 
P(V). 

Proof We fix an arbitrary hyperplane H of P. Let F and V* be as in 3.4.1. We 
define 

V:=FxV*. 

Then V is a vector space over F with elements (a, v) (a E F, v E V*). 

We shall define a map a that assigns to each point X of P a I-dimensional 
subspace of V: 

- If X is a point of P\H then, by 3.4.1, X is a vector of V*. In this case we 
define 

a(X) := «(1, X». 

- If X is a point of H then we consider the line OX of P\H. By 3.4.1 this 
line is a I-dimensional subspace (v) of V*. We define 

a(X) := «0, v». 

Claim I: a is bijective. 
Clearly, a is injective. 

In order to show that a is also surjective we consider an arbitrary 1-

dimensional subspace «a, v» of V. If a 7= 0 then the vector v I a of V* (or 
the corresponding point of P\H) is a preimage of «a, v». If a = 0 then the 
point of H on the line (v) of P\H is a preimage of «a, v». 
Claim 2: The map a transforms lines of P onto lines of P(V). 

Let g be an arbitrary line of P. 
CaseI. g is a line of P\H. 

Then we have g = u + (v) with u, v E V*, and it follows that 

a(g) = «(1, u), (0, v». 

Case 2. g is a line of H. 

Let C), C2 be two points on g. Let v), v2 be the vectors of V* such that 

OC l = (VI), OC2 = (v2)' 

Then «O,vl), (0,v2» is the line a(g). 

It follows that a is an isomorphism from P onto P(V) (see exercise 27). 
Thus the theorem is completely proved. o 
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The importance of the above theorem can also be seen from the next corollary. 

3.4.3 Corollary. If dim(P) 2 3 then P = P(V). 
In other words. projective spaces that are not only planes are coordinatizable by 
a division ring. 

Proof 2.7.1 and 3.4.2. o 

3.5 The representation theorems for collineations 

In this section we shall determine all collineations of Desarguesian affine and 
projective spaces. More precisely, we shall describe the collineations in terms of 

the underlying vector space. As in the first representation theorems we shall begin 

with affine spaces. 
Let A = P\H be an affine space of dimension d 22 in which the theorem of 

Desargues holds. We fix a point 0 of A. By T = T(H) we denote the group of 
all translations of A, and by r the set of all collineations of A; these are those 

collineations of P that fix the hyperplane H as a whole. The set 

r 0 = {a Er I 0,(0) = O} 

of those collineations that fix the point 0 will play an important role. (Note that 

in r 0 there are not only the elements of Do·) 
By the first representation theorem there are a division ring F and a vector 

space V* such that 
- the points of A are the elements of V*. and 

the lines of A are the co sets of the I-dimensional subspaces of V*. 

We shall use these notations throughout. 

3.5.1 Lemma. (a) r is a group (with respect to composition of maps). 

(b) r 0 is a subgroup of r. 
(c) T is a normal subgroup of r. 
(d) Each a E r can be uniquely written as 

a = ""Ca with ""C E T, O'Er O. 

Proof (a) We show that r is a subgroup of the group of all permutations of the 

point set of A: The identity lies in r and the product of any two elements of r 
is again contained in r. Hence one has only to show that along with a the col­

lineation a-I also lies in r. This will be done in exercise 7. 

(b) is obvious. 
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(c) Let ""C E T and a E r be arbitrary elements. We have to show that a""Ca -I E 

T. Since ""C fixes all points of H, for each point P of H we have that 

so 

am-I(p) = aa-i(p) = P. 

Thus the collineation a""Ca- i has axis H. If a""Ca-1 fixes a point Q ~ H then 

a""Ca-I(Q) = Q, also ""C(a-I(Q» = a-I (Q), 

so • (and therefore a""Ca-1) is the identity and trivially contained in T. If 0,.0,-1 

fixes no point outside H then the centre of a.a-i is on H, and a'ra-I is a 
translation. 

(d) Existence: Let • = ""Ca{O) be the translation mapping 0 onto 0,(0). Putting 
a := .-10, it follows that 

a = ""Ca, 

where • E T, and 0'(0) = .-10,(0) = 0, hence O'Er O. 

Uniqueness: Suppose that also a = .'0" with ""C' E T, a' E r o. Then 

.'-1, = a'()1 ET (\ r 0 = {id}; 

hence ,'-I""C = id = a'()I, and so ""c' =""C and a' = a. o 

Remark. 3.5.1(d) is extremely useful since it means that the problem of describing 
all collineations of A splits into two smaller problems, namely describing the 
elements of T and the elements of r o. 

First we shall solve the simpler problem, namely to describe the translations. 

3.5.2 Lemma. Let , E T be an arbitrary translation. We choose an arbitrary 
point P of A and put P' := ""C(P). If we consider the points P and P' as vectors 
of V* then we may describe , as follows: 

,(X) = X + P' - P for all points X of A. 

Proof In view of 3.2.2 (see also exercise 22) we know that the map " defined by 

,'(X) := X + P' - P 

is a translation. Thus ""C and " are translations which both map the point P onto 
P'. This implies that ""Cr 

= •. Hence, the definition of " applies to ""c. This is the 
assertion. 0 



120 3 The Representation Theorems 

After having described the translations in a satisfactory way we now turn to the 
elements of r o. We shall show that the collineations in r 0 are 'semilinear' maps 
of the vector spaces V*. 

Definition. Let V be a vector space over the division ring F, and let A be an 
automorphism of F. A map y of V into itself is called a semilinear map with 
accompanying automorphism A if for all v, WE V and for all a E F we have 
that 

"((v + w) = y(v) + yew), 

and 

y(a·v) = A(a)·y(v). 

Examples. (a) The semilinear maps that have as accompanying automorphism the 
identity are precisely the linear maps. 
(b) Let A be an automorphism of F. For a basis {vh"" Vd} of the vector 
space V we define the map Y A of V into itself by 

YA(alvl + ... + advd) := A(al)vl + ... + A(ad)vd' 

By the simplest checking one can verify that y A can be uniquely extended to a 
semilinear map with accompanying automorphism A. 

Now we are able to formulate and prove a description of the elements of r o. The 
first step is the following lemma, which shows the effect of the elements of r 0 

on the sum of two vectors. Since the elements of V* are the points of A, the col­
lineations of A also act on V*. 

For the remainder of this section we shall suppose that the order of A is at 
least 3. 

3.5.3 Lemma. Let cr be an arbitrary element 0/ ['0' Then/or all v, WE V* we 

have that 

cr(v + w) = cr(v) + cr(w). 

Proof W.l.o.g. we may assume that v, w *- o. 
Case 1. (v) *- (w). 

From Section 3.2 we know that 

v + W = vw* n v*w. 
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Since a may be extended to a collineation of the projective space P (see 3.2.1), 
we have 

cr(v + w) = cr(v)cr(w*) n cr(v*)cr(w). 

By applying our knowledge to cr(v) and cr(w) we see that 

a(v) + cr(w) = cr(v)a(w)* n cr(v)*cr(w). 

Since a is a collineation that fixes 0 and H we conclude that 

a(v)* = Ocr(v) n H = cr(Ov n H) = cr(Ov) n cr(H) = a(v*), 

and similarly 

cr(w)* = cr(w*). 

Putting these together we get 

cr(v + w) = cr(v)a(w*) n cr(v*)a(w) = cr(v)a(w)* n a(v)*a(w) = cr(v) + cr(w). 

Since (v - w) *- (w) we also get 

a(v) = cr(v - w + w) = cr(v - w) + a(w), 

and hence 

cr(v - w) = cr(v) - cr(w). 

On the other hand we also have 

a(v - w) = cr(v) + cr(-w), 

and so in particular a(-w) = -(J(w). This is true for each vector w E V* since 
there is always a vector v E V* with (v) *- (w). 
Case 2. (v) = (w). 

If v + w = 0 then 

cr(v + w) = cr(o) = 0 = cr(v) - cr(v) = cr(v) + a(-v) = cr(v) + cr(w). 

Thus we may assume that v + w *- o. Since dim(P);::: 2 there is a u E V* such 
that (u) *- (v). By the first case we now get 

cr(v + w) = a«v + w + u) - u) 

= a(v + w + u) - cr(u) 

= cr(v) + cr(w + u) - cr(u) 

= a(v) + cr(w) + creu) - a(u) 

= cr(v) + cr(w). 

(since (u) *- (v + W + u» 

(since (v) *- (w + u» 

(since (w) *- (u» 

o 
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3.5.4 Theorem. Each collineation a E r 0 is a semilinear map of the vector 
spaces V*. 

This theorem implies immediately 

3.5.5 Corollary Suppose that F = Q, R or Zp (p a prime). Then each a E r 0 

is a linear map of V* in itself. 

Proof The only automorphism of Q, R or Zp is the identity. o 

Proof of Theorem 3.5.4. This proof contains the main work of this section. Be 
prepared for a rather long argument. 

Lemma 3.5.3 already shows that each element of r 0 is additive. We have to 
show that there exists an automorphism A of F such that for each collineation a 
E r 0 and for all a E F and X E V* we have that 

a(a·X) = A(a)·a(X). 

For a E F* (:= F\ {On and a point X 7= 0 of P\H the points 0, X, and a·X 
are collinear. Since a is a collineation with a(O) = 0 the points 0, a(X), and 
a(a·X) are also collinear. Hence a(a·X) is a multiple of a(X). Let Ax(a) be 

the corresponding element of F, this means that 

a(a·X) = Ax(a)·a(X) (a E F*, X * 0). 

Claim 1: For all a E F* and all X, Y 7= 0 we have that 

AX(a) = Ay(a). 

In order to see this we distinguish two cases. 
Case 1. The points 0, X, and Y are not collinear. 

Then, by definition of A we have on the one hand 

a(a·(X + Y» = AX + y(a)·a(X + Y) = AX + y(a)·(a(X) + a(Y» 

= AX + y(a)·a(X) + AX + y(a)·a(Y) 

and on the other hand 

a(a·(X + Y» = a(a·X + a· Y) = a(a·X) + a(a· Y) = Ax(a)·a(X) + Ay(a)·a(Y). 

Since a is a collineation the points 0 (= a(O», a(X) and a(Y) are also non­
collinear; hence a(X) and a(Y) are - considered as vectors - linearly independ­

ent. Thus we have 

AX(a) = AX + yea) = /I.y(a). 
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Case 2. The points 0, X, and Y are collinear. 

We consider a point Z of P\H not on OX. Then, by case 1 we have that 

Ax(a) = Az(a) = Ay(a). 

Ifwe define Ao(a):= 0 then we have got a map A of F into itself defined by 

A(a) := Ax(a) for any point X 7= 0 of P\H, 

which satisfies 

a(a·X) = A(a)·a(X) for all a E F and all points X of P\H. 

Of course, A is our candidate for the accompanying automorphism. 

Claim 2: The map A is an automorphism of F. 
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First we show that A is a homomorphism of F. For a, b E F and any point X 
we have 

A(a + b)·a(X) = a«a + b)·X) = a(a·X + b· X) 

so 

= a(a·X) + a(b·X) = A(a)·(X) + A(b)·a(X) 

= (A(a) + A(b»·a(X), 

A(a + b) = A(a) + A(b). 

Moreover we have that 

A(ab)·a(X) = a(ab·X) = A(a)·a(b·X) = A(a)A(b)·a(X), 

and so 

A(ab) = A(a)A(b). 

In order to show that A is injective we suppose that A(a) = A(b). Since a acts 
bijectivelyon V* it follows that 

a(a·X) = A(a)·a(X) = A(b)·a(X) = a(b·X), 

hence a·X = b·X. 

Surjectivity: In order to determine a b E F such that A(b) = a we determine 

for an arbitrary point X 7= ° the preimage Y of a·a(X) under the map a. Since 

a·a(X) is a point of the line through ° and a(X), the preimage Y must be a 
point of the line through 0 and X. Thus there is a b such that Y = b· X. There­
fore, 

a( b· X) = a(Y) = a· a(X). 
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This implies 

a·a(X) = a(b·X) = A(b)·a(X), 

hence A(b) = a. 
Hence A is an automorphism of F. o 

3.5.6 Second representation theorem for affine spaces. Let A = P\H be a De­
sarguesian affine space of dimension d;::: 2 that is represented by the vector 
space V* over the division ring F. Then the following assertions are true. 
Ca) If, is a translation and a is an invertible semilinear map of V* then ,a 
is a collineation of A. 

Cb) Each collineation a of A can be represented as 

a = ,a, 

where , is a translation and a is an invertible semilinear map of V*. 

Proof Ca) In exercise 29 you are invited to show that a (and so ,a) is a col­
lineation. 
(b) follows by the preceding theorems. o 

Now we turn to the projective case. First we deal with the 'trivial' direction. 

3.5.7 Theorem. Let V be a vector space over the division ring F. If Y is a bi­
jective semilinear map of V then y induces a collineation of P(V). 

Proof Let A be the accompanying automorphism of y. We define 

a( (v») := (y(v». 

Then a is well defined since 

a«a·v») = (y(a·v» = (A(a)·y(v» = (y(v» 

for a"# 0. Moreover, a maps lines onto lines: 

a«v, w») = a( {(a·v + b·w) I a, bE F}) 

= {(y(a·v + b·w» I a, bE F} 

= {(A(a)·y(v) + A(b)·y(w» I a, bE F} 

= (y(v), yew»~. 

Since y is bijective a is also bijective, and thus everything is shown. o 

3.5.8 Second representation theorem for projective spaces. Let P be a Desar­
guesian projective space of dimension d;::: 2, and let V be a vector space such 

3.5 The representation theorems for collineations 125 

that P = P(V). Then for each collineation a of P there is a bijective semilinear 
map y of V that induces a. 

3.5.9 Corollary. Let F be the division ring belonging to P. If F = Q, R, or Zp' 

(p a prime) then any collineation of P is induced by a bijective linear map of V. 

o 
Proof of 3.5.8. Let H, 0, V*, and V be as in the proof of 3.4.2. Then the point 

o is represented by the subspace «(1,0» of V. Let ffi* = {vb' .. , Vd} be a 
basis of V*. Then 

ffiv = {ui:= (0, Vi) I i = 1, ... , d} u {UO := (1, O)} 

is a basis of V and 

ffi = {(CO, Vi» I i = 1, ... , d} u {«(1, O»} 

is a basis of P. Hence ffi \ {O} = (ffi \ { «1, 0» }) is a set of d independent points 
of H, hence a basis of H. Since a is a collineation a(ffi) is also a basis of P. 

Let wO, WJ, .•. , wd be vectors of V such that 

and 

(wo):= a«(1, 0»). 

Then {wo, wb ... , wd} is a basis of V. We define the map y of V into itself in 
such a way that y maps a vector x = koUO + klu, + ... + kdlid onto 

y(x) = kowo + kIWI + ... + kcfWd' 

Then y is a bijective linear map of V onto itself. By 3.5.7 y induces a collinea­
tion J3 of P. It follows that 

a := j3- l a 

is a collineation of P, which fixes all points of ffi. In particular, a fixes the point 
o and a basis of H, hence it also fixes H (as a whole). Thus we may also con­
sider a as a collineation of A = P\H. Therefore, the 'affine part' of a - the 
restriction of a to A - is by 3.5.6 a semilinear map of V* into itself with ac­
companying automorphism A. 

Hence the map p of V into itself that is defined by 

pea, v) := (A(a), a(v» (a E F, v E V*) 

is a semilinear map of V into itself with accompanying automorphism A. 
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Since cr coincides with the collineation of P\H induced by p and since by 

3.2.1 the extensions of these collineations to P are unique p is the collineation 
induced by cr on P. 

Thus y' := yp is the desired semilinear map. o 

The importance of the second representation theorem consists, among other 
things, in the fact that the identity is the only collineation that fixes 'many points' 

in 'general position'. We will discuss this in the next section. 

3.6 Projective collineations 

Definition. A collineation of a projective space P(V) is called projective if it is 

induced by a linear map of V. 

Clearly, the set of projective collineations of P(V) forms a group. The question is 

how big this group is. Can one describe this group particularly nicely? 
First we show that all collineations we have considered so far in detail are in 

fact projective. 

3.6.1 Theorem. Each central collineation of P(V) is a projective collineation. 

Proof Let H be an arbitrary hyperplane of P = P(V). It is sufficient to show that 
all central collineations with axis H are projective. 

Let the projective space P be coordinatized in such a way that 0 and V 

have the same meaning as in the proof of 3.5.8. It is sufficient to show that all 
translations with axis H and all elements of Do are projective collineations, 
since each central collineation with axis H is the product of a translation and an 

element of Do (cf. 3.5.6). 
First we show that each element of DO is projective. For this we consider the 

line g through the point 0 = «1, 0» and a point C = «0, UI» on H. Then the 

points 7= 0, C on g have the form «a, UI» with a 7= 0. Let P = «a, UI» and 

Q = «b, UI» be two distinct points 7= 0, C on g. We show that there is a projec­

tive collineation u in Do mapping P onto Q. Then u is the element of Do 
mapping P onto Q. It then follows that all elements of Do are projective. 

To prove this we extend «0, UI» to a basis {«O, UI», «0, U2», ... , «0, ud»} 
of H. Then the linear map y that is defined by 

y(1, 0) := (bl a, 0) and y(O, ui) := (0, ui) (i = 1, ... , d) 

induces a collineation u. Since y fixes the vectors (0, uD it fixes each vector in 
the span of these vectors. So u fixes each point of H; hence u has axis H. 
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Since 0 is also fixed, u has centre O. Finally, since P = (a'(1, 0) + (0, ul» is 
mapped onto the point (b'(l, 0) + (0, uI» = Q, u is the projective collineation of 
Do mapping P onto Q. 

It remains to show that each translation is projective. Let 't be a translation 
with axis H mapping the point 0 onto a point P 7= O. In the language of P(V) 

this means: Let {(CO, UI»,' .. , «0, ud»} be a basis of H. Then 't maps the 
points ({O, UI», ... , «0, ud» onto themselves and each point «(1, X» onto «(1, 

X + P». Then the linear map y that is defined by 

y(O, ui) := (0, ui) and y(1, 0) := (1, P) 

induces the translation 'to This may be seen as follows. The collineation induced 
by y has H as its axis and fixes no point outside H, since P 7= O. Hence y m­
duces a translation. Since this translation maps 0 onto P, y induces 'to 0 

Definition. A set of d + 2 points of P in general position is called a frame. In 

other words, a frame is a set g{ of d + 2 points of P such that for each point P 

of g{ the set g{ \ {P} is a basis of P. An ordered frame is a sequence (Po, P], . 

",Pd,Pd + I ) ofd+2 pointsofP suchthattheset {Po,P], ... ,Pd,Pd + 1} is 
a frame. 

Examples. In a projective plane a set of points is a frame if it consists of four 
points no three of which are collinear; a set of points in a 3-dimensional projective 

space is a frame if it has exactly five points any four of which span the whole 
space. 

Observation. Let {(vo), (vI),' .. , (Vd), (vd+ I)} be a frame of P = P(V). Then 
we can w.l.o.g. assume that vd+ I = Vo + VI + ... + Vd' For we have 

vd+ 1= aOvO + alvl + ... + ati'd 

with aj 7= ° (i = 0, ... , d). Replace Vi by aivi (i = 0, ... , d). 

In a certain contrast to 3.6.1 the next theorem says that there are only 'few' pro­
jective collineations. 

3.6.2 Theorem. If a projective collineation of P = P(V) fixes each point of a 
frame then it is the identity. 

Proof Let u be a projective collineation of P(V) that fixes each point of the 

frame g{ = {(vo), (vI),' .. , (Vd)' (vo + VI + ... + Vd)}' Since u is projective 
there is a linear map y of V that induces u. Since each point of g{ is fixed it 
follows that 
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and 

This implies 

a·(vO+vI + ... + vd) = y(vo + v] + .. . +vd) 

= y(vo) + y(vI) + ... + y(vd) 

= aOvO + alvl + ... + advd, 

also ao=a] = . .. =ad=a. 

Hence y maps each vector v onto a·v; thus a acts on the set of subspaces of 
V as the identity. 0 

3.6.3 Corollary. Let fJt = {Po, Plo' .. , P d, Pd+ d and fJt' = {P'o, pI], ... , P'd, 
P'd+ I} be frames of P(V). Then there is exactly one projective collineation a of 

P(V) such that a(Pi) = Pli (i = 0, 1, ... , d+ 1). In other words, the group of 

projective collineations of P(V) acts sharply transitively on the set of ordered 

frames of P(V). 

Proof First we show the existence of a: Let Pi =: (Vi), p l

i =: (v'i) (i = 0, 1, ... , 
d), and 

P d+ 1 = (vo + VI + ... + Vd)' P'd+ 1 = (v'o + v'] + ... + V'd)' 

Then the linear map y defined by 

y(vi) := v't (i = 0, 1, ... , d) 

induces a projective collineation, which maps Pi onto P'i (i = 0, 1, ... , d, d + 1). 

Now we show the uniqueness: Let a and ~ be projective collineations that 
map Pi onto p l

i (i = 0, 1, ... , d, d + 1). Then a-I~ is a projective collineation, 

which fixes each point of the frame ~k. Hence, by 3.6.2, a-I~ is the identity. 

Thus a = 13. 0 

An important theorem in projective geometry says that the projective collineations 
are exactly the products of central collineations. In order to prove this theorem we 

need some preparations. 

3.6.4 Lemma. Let {PO' PJ. ... , P d} and {Qo, QJ. ... , Qd} be bases of P. Then 
there is a product 13 of at most d + 1 central collineations such that 

~(Pi) = Qi for i = 0, 1, ... , d. 
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Proof We shall show the following assertion by induction on s: for each 

s E {O, 1, ... , d} there is a product I3s of at most s + 1 central collineations 
such that 

l3iPi) = Qi for i = 0, 1, ... , s. 

If s = ° we choose any central collineation ao with ao(Po) = Qo. Define 130 = 

ao· 
Assume that the assertion is true for s-1 ~ O. Let I3s-l(Ps) = Ps'. We con­

struct a central collineation as fixing Qo,· .. , Qs _ I and mapping Ps' onto Qs: 
Since s - 1 ~ d - 1 we have that dim(Qo, Qlo ... , Qs _ I) = s - 1 ~ d - 1. Since 

{Qo, ... , Qs - lo Qs} and {Qo,···, Qs - j,P s'} = {l3s - I (Po), ... , 13s - ] (Ps - I), 
I3s-](Ps)} are independent sets, neither Qs nor Ps' is a point of (Qo, QJ. ... , 

Qs - 1)' 
We shall show that there is a hyperplane H through (Qo, QJ. ... , Qs _ I) that 

contains neither Qs nor Ps'. Then there is a central collineation as with axis H 

that maps Ps' onto Qs' The assertion follows with I3s = a sl3s - ]. 
Claim: There is a hyperplane through (Qo, Q], ... , Qs _]) containing neither 

Qs nor Ps'· 
For if Qs = Ps' then (Qo, QJ. ... , Qs - J. Qs + ), ... , Qd) is the desired hyper­

plane. 

Thus, we may assume that Qs"* PS'. Let P be an arbitrary point on the line 
QsP s' that is different from Qs and Ps'. Then there is a subset 93 of {Qo, 
QJ. ... , Qd} such that P is contained in (93) but there is no proper subset 93' 
of 93 such that P is contained in (93'). By construction of P there is an element 

Qi"* Qs in 93. In view of the exchange lemma, {Qo, Q], ... , Qd} \Qi uP is a 

basis of P. Hence ({ Qo, Q], ... , Qd} \ {Q" Qs} u P) is a hyperplane that con­
tains P but not Qs' hence it also does not contain Ps'. 0 

3.6.5 Lemma. Let {PO' PJ. ... , P d, P} and {Po, Ph" ., P d, Q} be frames of P. 
Then there is a product y of at most d central collineations such that 

y(Pi) = Pi for i = 0,1, ... , d 

and 

y(P) = Q. 

Proof We show the following stronger statement by induction on d. 

Let Pj be an arbitrary point of {Po, Pj, ... , P d}' Then there is a product y of at 

most d central collineations with y(Pi) = Pi for i = 0, 1, ... , d and y(P) = Q, 
where Pj is contained in the axis of each of these central collineations. 
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We may assume w.l.o.g. that Pj = Po. First we suppose d = 2 (see Figure 3.9). 

Figure 3.9 Product of central collineations 

By a central collineation a2 with centre P2 and axis POP l the point P can be 
mapped onto the point P' = PP2 n PIQ. Then one can map the point P' using a 

central collineation aI with centre PI and axis POP2 onto Q. Since al and 

a2 fix the points Po, PI> P2 this is also true for Y = ala2' 
Suppose now that d> 2 and assume that the claim is true for d - 1. We con­

sider the hyperplane H = (PI> ... , P d-I> P). First we construct two frames of H 
for which we may apply the induction hypothesis. Let P" = POP d n H and P' = 
QPdnH. 

Claim 1: {PI>"" P d- J, P", P} is aframe of H. 
For this we have to show that any d of these points are independent. Since 

{PI> ... , P d-l> P} is a subset of a frame of P, this set is independent. Assume 
that P" is dependent on a set ffi of d - 1 points of {PI>"" P d- J, P}. Then 

P" E (ffi) and therefore Po E P"P d ~ (ffi, P d), a contradiction, since {Po,···, P cb 

P} is a frame. 

Claim 2: {PI>"" P d-" P", PI} is aframe of H. 
By the first claim the points {PI>"" P d-)' PII} are independent. Assume that 

P' is dependent on {PI,"" P d- I}' Then we have Q E P'P d ~ (PI, ... , P d), a 
contradiction, since {Po, ... , P d, Q} is a frame. Assume that P' is dependent on 

{PI,' .. , P d-)' P"} \P i (l ~ i ~ d - 1). W.l.o.g. i = 1. Then it follows that Q E 

P'P d ~ (Plo' .. , P d, P II
) = (Plo' .. , P d, Po), a contradiction since {Po,···, P d, Q} 

is a frame. 

Since {PI>"" P d-J> P", P} and {PI>"" P d- I> pit, PI} are frames of H, by 
induction, there is a product Y d _ 1 * of d - 1 central collineations al *, ... , 

ad _ I * of H such that 
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Yd-I*(Pi)=P i for i=l, ... ,d-l, 

Yd-I*(P)=pl, 
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and with the property that P" is contained in the axis of a/ (i = 1, ... , d - 1). 

By 3.1.10 each central collineation a/ of H is induced by a central collinea­
tion at of P whose axis passes through Po. Hence the line P"Po, and therefore 
also the point P d E p"p 0, is contained in the axis of ai (i = 1, ... , d - I). In par­
ticular we have for Y d _ I = al 0 ••• oad _ I 

Yd- I(Pd) = Pd' 

We now have to find a central collineation ad that maps P' onto Q and fixes 

the points Pi (i = 0, ... , d), such that Po is contained in the axis. This is not diffi­

cult. We define ad as the central collineation with axis (Po, PI> ... , P d-l) and 
centre P d that maps P' onto Q. We have to show that Q and P' are not con­

tained in the axis of ad: The point Q does not lie in the axis since {Po, ... , P d, 

Q} is a frame. Assume that P' is contained in the axis of ad' Then, by construc­
tion of P' we have 

P' E (Po, ... , P d- \) n (PI> ... , P d-]' P) = (PI> ... , P d-l), 

and therefore 

Q E ptp d~ (PI> ... , P d-]' P d), 

a contradiction, since {Po, ... , P d, Q} is a frame. 
Thus the collineation 

Yd=adoad-l a ... oal 

has the following properties: 

Yd(Pi) = Pi for i = 0, ... , d, 

Yd(P) = ad 0 Yd-I(P) = ... = ad(Q') = Q. 

Hence Po is contained in the axis of at (i = 1, ... , d). 
Thus we have shown the assertion. o 

3.6.6 Corollary. Let {Po, PI> ... , P d+ Il and {Qo, QJ> ... , Qd+ d be arbitrary 
frames of P. Then there is a product <5 of (at most 2d+ 1) central collineations 
of P such that 

<5(Pi)=Qi for i=O, 1, .. . ,d+ l. 
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Proof By Lemma 3.6.4 we can map Po, P], ... , P d onto Qo, Qb ... , Qd by a 
product ~ of at most d + 1 central collineations. By Lemma 3.6.5 we can map 
the point I3(P d + I) onto Qd + 1 by a product y of at most d central collinea­
tions. 

The assertion follows by putting 5 = y~. o 

Remark. One can show that d + 2 central collineations are sufficient to map one 
ordered frame onto another (see for instance [Ped63]). 

As another corollary we have the following theorem. 

3.6.7 Theorem. The projective collineations of P(V) are precisely the products 

of central collineations. 

Proof Since by 3.6.1 each central collineation is projective and since the product 
of projective collineations is again projective, one direction easily follows. 

Using our preparations, the other direction is also not difficult. Let a be an ar­
bitrary projective collineation of P(V). Then a maps a frame !R = {Po, 

PI>' .. , P d, P d+ d onto another frame ~'= {P'o, P'b' .. , P'd' P'd+ d. By Cor­
ollary 3.6.6 there is a product 5 of central collineations such that 

~Pi) = P\ (i = 0,1, ... , d, d+ 1). 

Then ~Pi) = a(Pi) for all i, hence, by 3.6.3 we have a = O. Thus a is also a 
product of central collineations. o 

3.6.8 Corollary. Let L be the set of collineations of P(V) that fix each point of a 

frame. Then L is a group. which is isomorphic to the group Aut(F) of automor­
phisms of F. 

Proof Let !R= {(vo), (Vj), ... ,(vd)' (vo+Vj + ... + vd)} be a frame that is 
fixed pointwise by each element of L. Let IT E L, and denote by y the semi linear 
map of V with accompanying automorphism 1 that induces IT. As in the proof 

of3.6.2 one sees that IT maps each Vi onto av;. W.l.o.g. we assume that a = 1. 
Therefore we have 

y(aovo + ... + adv d) = 1(ao)vo + ... + 1(ad)v d· 

We denote this map more accurately by YA' Thus we have found a map L ~ 
Aut(F), more precisely the map that maps IT onto 1. One easily checks (see exer­
cise 33) that this map is a homomorphism. Since for 1 *" l' the collineations in­
duced by Y A and y}.' are distinct, the assertion follows. 0 
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Exercises 

1 Show that the set of all collineations of a projective space forms a group with 
respect to composition of maps. 

2 Show that the following maps of the Euclidean plane are central collineations 
in the projective closure: point reflection, translation, rotation. 

3 Interpret reflections, point reflections, and translations of the 3-dimensional 
Euclidean space as central collineations in the projective closure. 

4 Let a be a collineation of a projective space P. Show: if g and h are two 
intersecting lines of P then a(g) and a(h) also intersect each other, and we 
have 

a(g n h) = a(g) n a(h). 

5 Show that a collineation a of a projective space P induces a collineation in 
a subspace U of P, if a fixes the subspace U as a whole. 

6 Convince yourself that a collineation a of a projective space P is also a 
collineation of the affine space P\H if a fixes the hyperplane H as a 
whole. 

7 Show that each a E r (that is each collineation a of the affine space P\H) 
has the property that a-j also lies in r. 

8 Let a be a collineation of a projective space P such that there is a point C 
with the property that each line through C is fixed by a. Show that there 
exists a hyperplane H such that each point of H is fixed by a. Shortly, 
every central collineation is axial. 

9 (a) Show: if U is a subspace of a hyperplane H of P then the central col­
lineations with axis H and centre in U form a group. 

(b) Does this assertion remain true if U is not a subspace of H? 

10 Determine all central collineations in the projective plane of order 2 having a 
fixed line go as axis. 

11 Let a be a central collineation of a projective space P with centre C and 
axis H. Show that for each point Q of P with Q *" C and Q E H, a in­
duces a central collineation in the quotient geometry P IQ. 

12 Let Q be a point of a Desarguesian projective space P. Show that each cen­
tral collineation of P IQ is induced by a central collineation of P. 
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13 (a) Let A be the affine plane of order 2. Show that each permutation of the 
four points of A can be extended to a collineation of the corresponding pro­
jective plane of order 2. 
(b) Compute the number of all collineations of the projective plane of order 2. 

14 Show that not all collineations of AG(3, 2) can be extended to collineations 
of PG(3, 2). [Hint: There is a collineation of AG(3, 2) fixing all points but 
two.] 

15 Let a be a collineation of an affine space A of order 2 with the additional 
property that a maps planes of A onto planes. Show that a can be 
uniquely extended to a collineation of the projective closure of A. 

16 Determine the group T(H) of the projective plane of order 3. [Let H be the 
line at infinity.] 

17 Let H be a hyperplane of a finite projective space P = PG(d, q). What is the 
number of elements of T(H)? How many elements are in T(P, H)? 

18 Let g be a line through the point 0 of a Desarguesian projective space. 
Show that 

T(g) = { .. E T(H) I .. (g) = g}. 

19 Describe geometrically (as in Figure 3.6) the sum of two points P, Q on a 
common line through O. 

20 Show that in the situation of the proof of 3.3.2 the following is true: if Y ~ 
-X, then 0, X + P, and Y - P are not collinear. 

21 Compare the addition of points in a Desarguesian affine space to the addition 
of vectors, which you have learned in school. 

22 Let V* be the vector space the affine space A is constructed with. Let P be 
an arbitrary point. Then show that the map defined by 

.. (X) :=X +P 

is a translation of A. 

23 Show that for each cr E Do and each line g = P + OC of P\H we have that 

cr(g) = cr(P + OC) = cr(P) + OC. 

24 Prove in detail that each element of Do is an automorphism of (9'*, +) (cf. 
Lemma 3.3.2). 
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25 Describe those central collineations that are collineations of A = P\H and 
fix point 0 of A. 

26 Prove 3.3.1 ('J.! is an element of Do'). 

27 Show that the map a defined in the proof of the first representation theorem 
(3.4.2) is also bijective on the set oflines. 

28 Let y A. be the semilinear map of the vector space V corresponding to the 
automorphism A. E Aut(F) (cf. the example before 3.5.3). Show that if A. ~ A.' 
then the collineations of P(V) induced by y). and y A.' are distinct. 

29 Complete the proof of 3.5.6. Show: if cr is a semilinear map of V* then cr 
is a collineation of A. 

30 Show that for any two bases {Po, Pj, ... , P d} and {Qo, QIo ... , Qd} of a 
Desarguesian projective space P there is a product P of elations with 

P(P j ) = Qi for i = 0, 1, ... , d. 

31 Let {PO' Plo P2, P3} and {Po, PI> Plo Q} be quadrangles of a projective 
plane P (so they are frames of P). Then show that, in general, there is no 
product y of elations with 

y(P j ) = Pi (i = 0, 1,2) and y(P) = Q. 

32 In 3.6.6 we have shown that each projective collineation is a product of at 
most 2d + 1 central collineations. Improve this bound. 

33 Show that the map L ~ Aut(F) defined in the proof of 3.6.8 is a homomor­
phism. 

34 Is each projective collineation a product of elations (central collineations with 
centre on axis)? 

35 Show that the number of ordered quadrangles (PI> P2, P3, P 4) in a projective 
plane of order n is (n2 + n + 1)(n2 + n)n2(n _1)2 . 

36 Determine the number of projective collineations of a Desarguesian projective 
plane. 

37 Compute the number of all collineations of a Desarguesian projective plane of 
prime order. 
[Use the fact that the field Zp has only the identity as automorphism.] 
Determine this number precisely for the orders 2,3, and 5. 
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True or false? 

D The set of all central collineations of P forms a group. 

D The set of all central collineations of P with common centre forms a group. 

D The set of all central collineations of P with a common fixed point Q forms 

a group. 

D Each fixed point of a collineation a is a centre of a. 

D Each fixed point of a central collineation a is a centre of a. 

D In order to show that collineations a, ~ are equal one has to show cr(P) = 

f)(P) for just one point P. 

D In order to show that central collineations a, f) are equal one has to show 

cr(P) = f)(P) for just one point P. 

D If a collineation a of P fixes a hyperplane H as a whole then each point of 

H is fixed by a. 

D The identity of P(V) is induced only by the identity of V. 

D Each projective space contains a frame. 

D Each basis may be extended to a frame. 

D Each basis may be uniquely extended to a frame. 

You should know the following notions 

Central collineation, fixed point, centre, axis, translation, T(H), .p, .addi~ion .of 

points, dilatation, semi linear map, accompanyi~g ~utomo~his~, collmeatlOn m­
duced by a bijective semilinear map, frame, projectIve collmeatlOn. 

4 Quadratic sets 

In the preceding chapters we described all 'linear' subspaces - all sets of points in 
projective spaces that can be described by one or more linear equations. In this 
chapter we shall study sets of points in projective spaces P(V) that satisfy a 
quadratic equation. Those sets of points are called quadrics. They play a central 
and extremely important role in projective geometry. Quadrics were studied syn­
thetically only in the seventies. F. Buekenhout coined the notion of a quadratic 
set, which is the synthetic counterpart of a quadric. In many situations it is suffi­
cient to consider only quadratic sets. 

Let P = (g>, .£, I) be a projective space of finite dimension. 

4.1 Fundamental definitions 

The first definition of a tangent already comes as a little surprise. 

Definition. Let ~ be a set of points of the projective space P. 
(a) We call a line g a tangent of ~ if either g has just one point in common 
with ~ or each point of g is contained in ~. If a tangent g has just one point P 
in common with ~,then one calls g a tangent of ~ at the point P. 

A line g with the property that each point of g lies in ~ is also called a 
~-line. In general, we call a subspace U a !i-subspace, if each point of U lies in 
~. 

(b) For each point P of ~ let the set ~p consist of the point P and all points 

X #- P of P such that the line XP is a tangent of ~. One calls ~p the tangent 
space of ~ at the point P. 
(c) We call the set ~ a quadratic set of P if it satisfies the following condi­
tions: 
(i) If-three-then-alJ axiom. Any line g that contains at least three points of ~ is 
totally contained in ~ (which means that each point of g lies in ~). In other 
words, any line has 0, 1,2, or all points in common with ~. 
(ii) Tangent-space axiom. For any point P E !i, its tangent space !ip is the set 
of points in a hyperplane or the set of all points of P. 
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One can also express the important tangent-space axiom as follows. For any point 
P of ~ one has the following alternatives: 
- either ~p is a hyperplane, that means any line through P in ~p is a tangent, 

and no line through P outside ~p is a tangent, each such line contains exactly 
one further point of Si, 
- or Sip is equal to P, and so each line through P is a tangent. 

Examples. (1) The empty set, any set consisting of just one point, the set of points 
on a line, ... , in short: the set of all points of a subspace is a quadratic set. These 

quadratic sets Si have the property that for each point P E ~ the set Sip equals 

P. 
(2) If Si consists of the points in the union of two hyperplanes H b H2 of P 
then ~ is a quadratic set. For each point P E HI n H2 we have that Sip con­

sists of all points of P while the points PE Hi\(Hl n H 2) satisfy Sip = Hi (i = 
1,2). 
(3) From elementary geometry we immediately get examples. Each circle (and 

each ellipse) in the Euclidean plane is a quadratic set. (Here the tangent spaces are 
just lines.) Also the sphere in 3-dimensional (or d-dimensional) real affine space 

is a quadratic set. 
In real 3-dimensional space there exist two other, quite different quadratic sets. 

These are, first of all, the cones; here, there is a point V, the vertex of the cone, 
such that Siv is the whole space. Finally, there is the hyperbolic quadric (see 

Figure 4.1), which we shall later discuss in detail (cf. also Section 2.4). 

Figure 4.1 A hyperbolic quadric 

Our aim is to study quadratic sets in detail. The ~-subspaces of maximum dimen­
sion will play a particular role. This will lead to many results in classical geome­

try, in particular we will investigate the Klein quadric. 
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4.1.1 Lemma. Let Si be a quadratic set of P, and let U be a subs pace of P. 
Then the set Si':= ~ n U of the points of ~ in U is a quadratic set of U. 
Moreover. we have 

Si'p= ~p n U 

for all points P E Si'. 

Proof It is clear that ~' also satisfies condition (i). In order to show the tangent 
space axiom we consider a point P E ~'. By definition of Si'p we have 

Si'p = {P} u {X I X is a point of U such that XP is a tangent} = Sip nU. 

Since £Lp is a subspace of P of dimension at least d - I, the set ~p n U is a 
subspace of U whose dimension is at least dim(U) - 1. 0 

We say that Si induces a quadratic set in a subspace U. 

Definition. Let £L be a quadratic set of P. 

The radical of Si is the set rad(~) of all points P E ~ with the property that 
£Lp consists of all points of P. 

We say that Si is nondegenerate if rad(£L) = 0, that is if for each point PE Si 
its tangent space £Lp is a hyperplane of P. 

Remark. In order to verify that a point is contained in the radical of a quadratic set, 
one has only to show that the tangents through that point span the whole space. 

Example. A sphere in the Euclidean space is a nondegenerate quadratic set, while 
a cone is degenerate; its radical consists of exactly one point, its vertex. 

4.1.2 Theorem. Let Si be a quadratic set of P. 

(a) The radical of £L is a linear subspace of P. 
(b) Let U be a complement of rad(Si) (that is a subs pace U such that 

Un rad(£L) = 0 and (U, rad(~» = P). Then Si':= ~n U is a nondegenerate 
quadratic set of U. 

(c) Si can be described as follows: Si consists of all points that lie on lines that 
join a point of rad(£L) with a point of £L' = Si n U. 

Proof (a) Let P, P' E rad(Si). Let pit be a third point on PP'. We have to show 
that P" also lies in rad(Si), that is that ~p .. contains all points of P. 

First we observe that PP' is a tangent containing at least two points of ~, 
therefore it is contained in Si. Assume that ~p.. is only a hyperplane, which 
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passes through PP'. Consider a line g through plO not contained in !2p ... Then g 

is not a tangent and therefore contains another point R of !2. Since the lines PR 
and P'R pass through P and P', respectively, they are tangents. Since they con­
tain more than one point of !2, they must be contained in !2. Consider now a 
point T on PR with T,* P, R (see Figure 4.2). 

Figure 4.2 

Then PT is a tangent, and, since it contains two points of !2, it is contained in 
!2. Since PT intersects the line POOR in some point T' with T' '* P", R, the line 

g = POOR is incident with at least three points of !2; therefore it is a tangent. This is 
a contradiction. 

(b) Assume that !2' is degenerate. Then there is a point P E!2' such that each 
line of U through P is a tangent. Since each line PR with R E rad(!2) is also a 

tangent, the tangents through P do not span only a hyperplane. Hence !2p is the 
whole space, and P is contained in rad(~), contradicting the choice of U. 
(c) follows directly from the definition of rad(~). D 

Remark. In view of 4.1.2 we can restrict our attention to the study of nondegener­
ate quadratic sets. 

4.1.3 Lemma. Let !2 be a quadratic set of P. If !2 is nondegenerate then for any 

two distinct points P, RE !2 we have !2p '* ~R' 
In other words, the quadratic set that is induced by !2 in a tangent space !2p 

has a radical that consists of just one point, namely P. 

F or the proof we assume that for two distinct points P and Q we have !2p = !2R 
=: H. Then the radical of the quadratic set !2' that is induced by !2 in H con­
tains at least the points P and R. Therefore, by 4.1.2(a) each point of the line PR 
is contained in rad(!2'). 
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Since !2 is nondegenerate each line through P that does not lie in H contains 
another point of !2. In particular there is a point S of ~ outside H. Consider the 

tangent space !is at the point S; since !2S is a hyperplane, it intersects PR in 
some point T. 

We shall show that !2T is the whole space: Since T E rad(!2'),!2T contains 
the hyperplane H. The line ST lies in !is, hence each point of ST is contained 
in !2. Thus ST also lies in ~T' Therefore ~T contains the hyperplane H and 

the point S outside H, hence the whole point set. This means that !2 is degener­
ate, a contradiction. D 

4.1.4 Lemma. Let !2 be a nondegenerate quadratic set of P. 

(a) If P E !2 and W is a complement of P in ~p, then !2':=!2n W is a non­
degenerate quadratic set of W. 

(b) If H is a hyperplane that is not a tangent hyperplane then !2':= ~n H is a 
nondegenerate quadratic set of H. 

Proof (a) By 4.1.3, rad(!2n !2p) = {P}. Thus, in view of 4.1.2(b)!2' is non­
degenerate. 

(b) Assume that there is a point X E rad(!2'). Then ~'x = H. Since H is not a 

tangent hyperplane, we have that !2x '* H. This contradicts Lemma 4.1.1, which 
says that !2'x = !2x n H. D 

4.2 The index of a quadratic set 

A quadratic set !2 can be described very well by the dimension of its maximal 
!2-subspaces. This maximum dimension is connected to the 'index' of !2, which 
turns out to be the crucial parameter to describe ~. 

Definition. Let t - 1 be the maximum dimension of a ~-subspace of a quadratic 

set !2. Then the integer t is called the index of !2. The !2-subspaces of dimen­
sion t - 1 are also called maximal !2-subspaces. 

Examples. A cone and a hyperboloid in 3-dimensional real space have index 2, 
since they contain lines, but no planes. Any quadratic set that does not contain a 
line has index 1; for instance, a sphere has index 1. 

The following lemma shows that the maximal ~-subspaces are 'uniformly dis­
tributed'. 
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4.2.1 Lemma. Let !i be a quadratic set of index t in P. Then each point of !2 is 
on a maximal !2-subspace. 

More precisely: if P is a point of !i outside a (t - 1 )-dimensional !i-sub­
space V, then there is a (t - 1 )-dimensional !i-subs pace U' through P that 
intersects V in a (t - 2)-dimensional subs pace. 

Proof The tangent hyperspace !ip at P intersects V in a subspace V of di­
mension ~ t - 2. It follows that each line PX with X E V is a tangent and there­
fore contained in !i. Thus U':= (P. V) is a (t - 1 )-dimensional !i-subspace. 0 

We formulate the assertion of 4.2.1 once more in the case t = 2: through each 

point of !2 outside a !i-line g there is a !i-line that intersects g. 

We shall use the following technical lemma in the proof of the next theorem. 

4.2.2 Lemma. Let !i be a quadratic set in P. Let S be a subset of !i with the 

property that the line through any two points of S is a !i-line. Then (S) is a !i­
subspace. 

The proof consists of two tricks. 
1st trick. W.l.o.g. S is finite. For since any spanning set contains a basis there is a 
finite set So ~ S with (So) = (S). It is therefore sufficient to show that (So) is a 
!2-subspace. 
2nd trick Induction by ISI. For ISI = 0,1, or 2 the assertion follows trivially. 

Suppose now that ISI> 2 and assume that the assertion is true for all sets of 
points with ISI- 1 elements. We consider an arbitrary point S E S. By induc­
tion, V := (S \ {S}) is a !i-subspace. W.l.o.g. we have that S \i!: V. By hypothe­
sis, for each point RE S\{S} the line RS is a !i-line. Since these lines gener­
ate the subspace ( S \ {S}, S) = (S), the tangent space of !i at the point S con­
tains the subspace (S) = (V, S). Therefore, all lines XS with X E V are con­
tained in !2. It follows that (S) = (V, S) ~!i. 0 

4.2.3 Theorem. Let !2 be a quadratic set in a d-dimensional projective space P, 
and let U be a maximal !i-subs pace. If !i is nondegenerate, then there is a 
maximal !2-subspace that is skew to U. 

Proof Let t be the index of ~ We shall show more generally the following as­
sertion: if j E {-I, ... , (- 2} then there is a maximal !i-subspace Uj such that 
dim(U (1 Uj ) = j. 

We proceed by induction on j. 
If j = t - 2 then the assertion follows from 4.2.1. 

I , 
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Suppose now 0 ~ j ~ t - 2, and let U' be a maximal !i-subspace 
with dim(V (1 U') = j. We shall construct a maximal !2-subspace VI! with 
dim(V (1 V") = j - 1. 

First, we observe that there exists a point P E !i such that (V (1 U', P) is not a 
!i-subspace. Otherwise, any point of V (1 U' would be in rad(!2); since 
dim(U (1 U') = j ~ 0 this contradicts the fact that !2 is nondegenerate. 

By 4.2.1 there is a maximal !i-subspace W of P through P intersecting U' 

in a subspace of dimension t - 2. We claim that W satisfies our claim: Since 
V (1 U' r:;t. W we have that 

dim(W (1 U (1 U') = j - I. 

It is sufficient to show that 

W (1 U=W (1 V (1 U'. 

Assume that there is a point X E W (1 V with X \i!: ut. Then the set 

S := (W (1 U) U (U' (1 V) U {X} 

satisfies the hypothesis of Lemma 4.2.2. Hence M:= (S > is a !2-subspace. This 
subspace contains the hyperplane W (1 U' of W and the point X E W\U', and 
hence the whole subspace W. Thus M = W. So we would have U (1 U' ~ M = 
W, contradicting the choice of P. 0 

As a corollary we get the most important result of this section. 

4.2.4 Theorem. Let !i be a nondegenerate quadratic set of index 
dimensional projective space P. If d is even then 

if d is odd then 

d t< -' 
- 2 ' 

d+l 
t~--. 

2 

in a d-

Proof By the preceding theorem there are two skew (t - I)-dimensional !i-sub­
spaces V and U'. They satisfy dim(P) ~ dim(V) + dim(U') - dim(V (1 U'), so 
d~ 2·(t-l) + 1. 0 
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4.3 Quadratic sets in spaces of small dimension 

This section is devoted to a precise description of quadratic sets in projective 
planes and 3-dimensional projective spaces. In planes the following notion plays a 
central role. 

Definition. A nonempty set 0 of points in a projective plane is called an oval if 
no three points of 0 are collinear and each point of 0 is on exactly one tangent. 

4.3.1 Theorem. Let !i be a quadratic set in a projective plane P. Then !i is the 
empty set, just one point, one line, an oval, the set of points on two lines, or the 
whole set of points. 

Hence there is only one type of nonempty. nondegenerate quadratic sets in a 
projective plane, namely the ovals. 

Proof The assertion is true if !i contains at most one point. 
If !i consists of more than one point but does not contain a line, then !i is an 

oval: Since !i has at least two points, each point P of !i is on at least one line 
that is not a tangent. Hence, ~p is not the whole plane. Thus ~ is nondegenerate. 
From this it follows that any point of !i is on exactly one tangent. Hence !i is an 

oval. 
If !i has index at least 2 then the assertion is true, if there are at most two !i­

lines. If there are more than two !i-lines, ~ is the whole point set. For consider 
the point P of intersection of two !i-lines. Then !ip = P. If the third 52-line 
passes through P then there is a line g not through P that intersects the three 
!i-lines in distinct points. Hence g contains three points of !i and is therefore 

contained in !i. Thus there is a ~-line not through P and so !i=!ip = P. 0 

For the description of quadratic sets in 3-dimensional projective spaces we need 

three notions. 

Definition. Let P be a d-dimensional projective space. 
An ovoid is a nonempty set 0 of points of P satisfying the following proper-

ties: 
no three points of 0 are collinear; 
for each point P E 0 the tangents through P cover exactly a hyperplane. 

Now suppose d= 3. 
A set :J( of points of P is called a cone if there are a plane Tt, an oval 0 in 

Tt, and a point V ~ Tt such that X consists precisely of the points on the lines 

VX with X E 0. We call V the vertex of the cone X. 
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A hyperboloid is the set of points that are incident with the lines of a regulus 
(cf. Section 2.4). 

In other words, for a hyperboloid JC there exist two sets ~K, 0L' of mutually 
skew lines such that the following conditions are satisfied: 

each line of 0L intersects each line of ~K', 

through each point of a line of 0L there is a line of 0L' and conversely, 
JC consists of all points on the lines of ~R, (or ~R,' , respectively). 

Remark. In 2.4.3 we have shown that in a 3-dimensional projective space a regu­
Ius (and therefore a hyperboloid) exists if and only if the underlying division ring 

is a field, hence commutative. In this case any hyperboloid can be described by a 
quadratic equation. 

4.3.2 Theorem. Let !i be a quadratic set in a 3-dimensional projective space P. 
Then !i is a subs pace, an ovoid, a cone, a hyperboloid, or the union of two hy­
per planes. 

In particular, the nonempty, nondegenerate quadratic sets in a 3-dimensionaf 
projective space are precisely the ovoids and the hyperboloids. 

Proof Let us suppose that !i is not a subspace. Then !i contains at least two 
points. 

If !i has index 1 then no three points of ~ are collinear, in particular !i is 
nondegenerate. Therefore, !i is an ovoid. 

Now we study the case where !i has index 2. This is the most difficult case, 
and we shall need several steps to solve it. 
Step 1. We have that dim(rad(!i))::; O. 

Assume that rad(!i) contains a line g. Since !i '* g there exists a point 
P E !i \g. This implies (P, g) ~ !i, contradicting the fact that !i has only index 2. 
Step 2. The number of !i-lines through a point of !i outside the radical is 1 or 2. 

This can be seen as follows. By 4.2.1 each point P of !i is on at least one !i­

line. Assume that P is on three !i-lines. If these lines are not in a common plane 

then !ip is the whole space, hence P E rad(!i), a contradiction. Hence the three 

lines lie in a common plane Tt. Since ~ n Tt is a quadratic set it follows from 
4.3.1 that !in Tt is the whole plane Tt. Hence Tt ~ 52, contradicting the fact that 
the index of !i equals 2. 

Step 3. Each point of 52 that is not in rad(!i) lies on the same number of 
!i-lines. 

Assume that there are two points PI> P2 E !i such that PI is on one !i-line 

gl and P2 is on two 52-lines g2, g3' 
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Then the tangent plane .cip , passes through g], and the only points of !i in 
!ip are those of g I. The tangent plane !iP2 is spanned by g2 and g3, and the , .. 
points of !i in !iP2 are those of g2 and g3' Therefore .cip , and !iP2 are dlstmct 
planes, which meet in a line g. 

First we look at g as a line in !iPl ' It either intersects g] in exactly one point 
or is equal to g I. In the first case g is a line that contains precisely one point of 
!i; if one considers g as line of !iP2 then it becomes clear that this must be the 
point P2. Thus we have P2 E gj. In the second case it is g = g], hence in this 

case also P2 lies on gl' But for all points P on gl we have !ip;d !iPl , in par­
ticular !iP2 ;d !ip " a contradiction. 

Now it is natural to distinguish two cases: either any nonradical point is on ex­
actlyone !i-line or any such point is incident with exactly two .ci-lines. 
Step 4. If each point of !i \rad(!i) is on just one !2-line then !2 is a cone. 

First we claim that in this case any two !i-lines meet: Let gj and g2 be two 
!i-lines. Since the radical of .ci consists of at most one point there is a point 
PI ~ rad(!i) on gl' By 4.2.1 the point PI must be joined with g2 by a !i-line. 
Since g] is the only !2-line on Pj, gj must intersect the line g2' 

By the hypothesis of this step, the intersection of any two !i-lines lies in 
rad(!i). So the radical consists of exactly one point V, and all !i-lines pass 
through V. 

If 1t denotes a complement of V then, by 4.1.2, .ci induces a nondegenerate 
quadratic set !i' in 1t. Since !i has index 2 we have that !2 *- !2'. Moreover, !i' 
has index I; so, by 4.3.1, !i (11t is an oval. Therefore .ci is a cone. 
Step 5. If any point of !i \rad(!i) is on exactly two !i-lines then !i is a hyperbol­

oid. 

Let gj be an arbitrary !i-line. Since no three .ci-lines are in a common plane 
all !i-lines that meet g] are skew; we denote the set of these lines by ~l' Since 
any point of !i is connected by a !2-line with g], the lines in ~I cover all 
points of .ci. 

From this it follows that !i is nondegenerate. For each point of .ci \rad(!i) is 

on two !i-lines, thus through each point of .ci \rad(!i) outside gl there is a !i­
line g2 that does not intersect gj. A hypothetical point X in rad(!i) is w.l.o.g. 
not on g l. Then all lines through X in (X, g I) are tangents, hence !2-lines. 
Therefore (X, gl) ~ !&, a contradiction. 

We are now ready to show that !RI is a regulus. For this it is sufficient to 
show that through any point P of a line g E ~I there is a transversal to ~I' 

Since !2 is nondegenerate there is a uniquely determined .ci-line h *- g through 
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P. Since P is connected with any line of ~I \ {g} by a !2-line, the line h meets 
any line of 9(1' Hence ~1 is a regulus. 

This implies that !2 is a hyperboloid. 

As an easy finish of this proof we consider the case that the index of .ci equals 
3. (Note that the index of !2 is at most 3 since .ci is not the whole space.) Since 
.ci is not a subspace it must contain at least two planes. If .ci contains three planes 
then !2 is the whole space, a contradiction. 

Thus we have proved Theorem 4.3.2 completely. 0 

4.4 Quadratic sets in finite projective spaces 

Now we study quadratic sets in finite projective spaces. There will be a surprise: 
the upper bound for the index of a nondegenerate quadratic set (see 4.2.4) is 
nearly the same as the lower bound. It turns out that there are only three types of 
nondegenerate quadratic sets in finite projective spaces. 

In this section we suppose that P = PG(d, q) is a finite projective space of di­
mension d and order q. Let .ci be a quadratic set in P. 

4.4.1 Lemma. For a point P E !2 \rad(.ci) we denote by a (= ap) the number of 
!2-lines through P. Then the following assertions hold. 

(a) If!ip is a hyperplane then .cip contains exactly aq + 1 points of !i. 
(b) We have that I!2J = 1 + qd ~ I + aq; in particular, a is independent of the 
choice of the point P E !2 \rad(!2). 

Proof We observe that each line through P in !2p contains either no further 
point of !i or exactly q further points of !i, while each line through P outside 
.cip has exactly one further point of !i. 

On the a !i-lines through P E .ci \rad(.ci) there are exactly 1 + aq points of 
!i. Since these are all the points of .ci in the tangent hyperplane !ip, we have 
proved (a). All lines through P that are not contained in .cip intersect !i in a 
second point. Since there are exactly qd ~ I such lines, (b) also follows. 0 

Example. By 4.4.1 we can easily compute the numbers of points of quadratic sets 
in 2-dimensional and 3-dimensional projective spaces: 
- An oval has exactly q + 1 points (d = 2, a = 0). 

- An ovoid has q2 + 1 points (d = 3, a = 0), a hyperboloid has q2 + 1 + 2q = 

(q + 1)2 points (d = 3, a = 2), and a cone has q2 + 1 + q = q2 + q + 1 points 
(d=3,a= 1). 
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It is a remarkable fact that in finite projective spaces there exist only very few 
types of quadratic sets. This phenomenon can be seen for the first time in 
4-dimensional projective spaces. 

4.4.2 Theorem. Any nonempty, nondegenerate quadratic set in P = PG(4, q) has 

index 2. 

Proof Let ~ be a nonempty, nondegenerate quadratic set of P. In view of 4.2.4 
we have only to show that the index of ~ is at least 2. 

Assume that ~ has index l. Then a = 0, and, by 4.4.1(b), ~ has exactly 
q3 + 1 points. 

We claim: if H is a hyperplane of P that contains at least two points of ~ then 
the induced set ~'= ~ n H is an ovoid. 

For ~' is a quadratic set of index 1 as well. Since I~'I;:::: 2,~' is nondegener­
ate. Therefore, the claim follows by 4.3.2. In particular,~' has exactly q2 + 1 
points. 

We now consider the geometry consisting of the points of ~ together with 
those hyperplanes that intersect ~ in at least two points. We shall get a contra­
diction if we try to compute the number of these hyperplanes. 

Through a fixed point P of ~ there is the tangent hyperplane ~p; all other 
hyperplanes are of the type we are interested in. Hence through any point of ~ 
there are exactly q3 + q2 + q hyperplanes of interest. 

Using this observation we are able to compute the number b of those hyper­
planes: 

since by our claim, each point of ~ is counted q2 + 1 times. 
Since b is an integer, q2 + 1 must divide the product (q3 + 1)·(q3 + q2 + q). 

This is impossible, so we have a contradiction. 0 

The above theorem can be generalized to spaces of even dimension. 

4.4.3 Theorem. Any nonempty, nondegenerate quadratic set in P = PG(2t, q) has 

index t. 

Proof Let ~ be a nonempty, nondegenerate quadratic set of P. By 4.2.4 we have 
only to show that the index of ~ is at least t. For this we proceed by induction on 

t. 
The case t = 1 is treated in 4.3.1, and the case t = 2 was dealt with in 4.4.2. 

Therefore we suppose t;:::: 3, and assume that the assertion is true for t - 1. 
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Our first claim is that the index of ~ is at least 2. For this we assume that the 
index of ~ is 1. Then each tangent hyperplane contains just one point of ~. 

Consider two distinct points P, P' of ~, and let U be a (2t - 2)-dimensional 
subspace of p through P and P'. By construction, the quadratic set ~'= ~ n U 
is nonempty. For a point R E ~' we consider its tangent hyperplane ~'R' By 
4.1.1 we have that ~'R = ~R nU. Since by assumption ~R contains only one 
point of ~ it follows that ~'R =F U. Therefore,~' is a nonempty, nondegenerate 
quadratic set of index 1 in the 2(t - 1 )-dimensional projective space U with 
t ;:::: 2, a contradiction. 

Thus the index of ~ is at least 2. Now we consider a point P E ~ and its tan­

gent hyperplane H = ~p. By W we denote a complement of P in H, that is a 
subspace of dimension 2t - 2 of H that does not contain P; let ~'= ~ n W be 
the quadratic set induced by ~ in W. Since the index of ~ is at least 2, there is 
at least one ~-line through P, in particular,~' is not empty. By 4.1.4,~' is non­
degenerate. 

Therefore, by induction, the index of ~' equals t - 1. Thus ~' contains a ~­
subspace U of dimension t - 2. It follows that the subspace (P, U) has dimen­
sion t - I and is contained in ~. Hence the index of ~ is at least t. 0 

As a corollary we get the following important theorem, which is due to Emst Witt 
(1911-1991). 

4.4.4 Theorem. Let ~ be a nonempty, nondegenerate quadratic set of a finite 
projective space P of dimension d. Then there are only three possibilities for the 
index s of £i: if d is even then 

d 
s= -' 

2 ' 

if d is odd then 

d -1 d+l 
s=--

2 
or s= --. 

2 

Proof The case d even has been studied in 4.4.3. Suppose therefore that 
d = 2t + 1. By 4.2.4 the index of ~ is at most t + 1. 

It remains to show that s;:::: t. In order to do this we consider a hyperplane H 
that contains at least one point of ~ and is not a tangent hyperplane. Such a hy­
perplane exists. Counting the incident point-hyperplane pairs (P, ~) with P E ~ 

we get on the one hand 1~1·(qd-l + ... + 1), since there are qd-l + ... + 1 
hyperplanes through any point of ~. On the other hand there are I~I tangent hy­
perplanes, each containing 1 + aq points of ~. Since ~ is nondegenerate not all 
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points of a tangential hyperplane lie in 5:2, therefore a < qd - 2 + ... + 1. Thus 
there must be a hyperplane containing a point of 5:2 that is not a tangent hyper­
plane. 

Then the index s' of the quadratic set 5:2' = 5:2 ("'; H satisfies s' s s. Moreover, 
by 4.1.4,5:2' is nondegenerate and by construction, 5:2' is not empty. 

Now Theorem 4.4.3 yields s' = t, and therefore s ~ s' = t. 0 

4.5 Elliptic, parabolic, and hyperbolic quadratic sets 

In the preceding section we proved that the index of any nonempty, nondegenerate 
. d d' . I .. . d - 1 d d + 1 Th quadratic set of a fimte - ImenSlOna projectIve space IS -y-, 2' or -2-' e 

quadratic sets of such indices also play in general (not only in finite spaces) the 
main roles. We introduce the traditional names. 

Definition. Let 5:2 be a nondegenerate quadratic set in a d-dimensional projective 
space P. If d is even and the index of 5:2 is ~ then 5:2 is called parabolic. If d 

is odd then 5:2 is called elliptic if the index of 5:2 is d; 1, and hyperbolic if its 
. d . d+ 1 
III ex IS -2-' 

Examples. (a) We can reformulate Theorem 4.4.4 as follows. Any nonempty non­
degenerate quadratic set of a finite projective space is elliptic, parabolic, or hyper­
bolic. 
(b) The parabolic quadratic sets of a projective plane are precisely the ovals. In a 
3-dimensional projective space, the elliptic quadratic sets are precisely the ovoids, 
the hyperboloids are precisely the hyperbolic quadratic sets. 

Now we study the three most important types of nondegenerate quadratic sets in 
greater detail by looking at the structures they induce in hyperplanes. The results 
of this section show that one can 'reduce' the determination of nondegenerate 
quadratic sets in spaces of 'big' dimension to the investigation of quadratic sets in 
spaces of small dimension. 

It is convenient to operate with the following general definition of a cone. 

Definition. Let H be a hyperplane of a projective space P, and denote by V a 
point outside H. If 5:2* is a nondegenerate quadratic set of H then the quadratic 
set 

5:2:= U (VX) 
XE.'2* 

is called a cone with vertex V over ~*. 
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We begin by studying the parabolic quadratic sets. 

4.5.1 Theorem. Let ~ be a parabolic quadratic set in a 2t-dimensional projec­
tive space P with t ~ 2. 

(a) Let H = 5:2p be a tangent hyperplane. Then 5:2':= ~n H is a cone over a 
parabolic quadratic set. 

(b) Let H* be a hyperplane that is not a tangent hyperplane. Then ~*:= 
5:2n H* is an elliptic or a hyperbolic quadratic set. 

Proof (a) Let W be a complement of P in H, and defme !!)!':= ~n W. By 
4.1.4,!!)!' is a nondegenerate quadratic set. If U denotes a maximal ~-subspace 
through P then Un:= U n W has dimension dim(U) - 1. By 4.2.4, un is a 
maximal 5:2n -subspace, therefore !!)!' is parabolic. Since by 4.1.3 the radical of 5:2' 
consist of just one point, namely P, 5:2' is a cone over !!)!' with vertex P (cf. 
4.1.2). 

(b) Since H* is not a tangent hyperplane 5:2* is nondegenerate (cf. 4.1.4). A 
maximal 5:2-subspace (which is a subspace of dimension t - 1) intersects H* in a 
subspace of dimension t - I or t - 2. This means that 5:2* is elliptic or hyper­
~~. 0 

The above theorem seems to be very academic. But the following example shows 
its usefulness: 

4.5.2 Corollary. Let 5:2 be a nonempty, nondegenerate quadratic set in P = 
PG(4, q). Then 5:2 induces in any tangent hyperplane a cone, and in any other 
hyperplane an ovoid or a hyperboloid Furthermore, ~ consist of exactly 

q3 + q2 + q + 1 points, the number of hyperplanes in which 5:2 induces an ovoid 
is q2( q2 - 1) /2, and the number of hyperplanes in which ~ induces a hyperbol­
oid is q2(q2 + 1) /2. 

Proof We know that ~ is parabolic. From this the first assertion follows in view 
of 4.5.1. In particular we get that for each point P E ~ the quadratic set induced 
in 5:2p is a cone with vertex P. Thus the number a of ~-lines through P equals 
a = q + 1. Hence, by 4.4.1 we have 

I~I = 1 + q3 + a·q = 1 + q3 + (q + l)q. 

Let t = 15:21 = q3 + q2 + q + I be the number of tangent hyperplanes, and let h 
and e be the numbers of the 'hyperboloid hyperplanes' and the 'ovoid hyper­
planes'. It follows that 

t + h + e = q4 + q3 + q2 + q + I, 
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so 

h + e = q4. 

Since a tangent hyperplane contains exactly q2 + q + 1 points of ~,while a hy­
perboloid hyperplane contains (q + 1)2, and an ovoid hyperplane exactly q2 + 1 
points of ~,and any point of :2 is on exactly q3 + q2 + q + 1 hyperplanes, we 

see that 

t·(q2 + q + 1) + h(q + 1)2 + e·(q2 + 1) = 1~1·(q3 + q2 + q + 1). 

This implies 

h·(q + 1)2 + e·(q2 + 1) = 1~1·(q3 + q2 + q + 1) - (.(q2 + q + 1) 

= q3.(q3 + q2 + q + 1). 

Putting this together with the above equation we have 

h.(q2 + 2q + 1) + (q4 - h)·(q2 + 1) = q3.(q3 + q2 + q + 1), 

so 

From this it follows that 

o 

Now we study the particularly important hyperbolic case. For the elliptic case we 

refer to the exercises (see exercise 18). 

4.5.3 Theorem. Let ~ be a hyperbolic quadratiC set of a (2t + 1 )-dimensional 

projective space P with t z 2. Then the following assertions are true. 

(a) If H = ~p is a tangent hyperplane then ~' :=!in H is a cone over a hyper­

bolic quadratic set. 
(b) Let H* be a hyperplane that is not a tangent hyperplane. Then ~* := ~ n H 

is a parabolic quadratic set. 

Proof (a) The proof is nearly literally the same as the proof of 4.5.1(a): 

Let W be a complement of P in H, and define ~":= ~n W. By 4.1.4, ~' 
is a nondegenerate quadratic set. If U denotes a maximal ~-subspace through P 

(which means in particular that U has dimension t) then U" := Un W has 
dimension t - 1. By 4.2.4, un is a maximal ~'-subspace, therefore ~' is 
hyperbolic. Since by 4.1.3 the radical of ~' consists of just one point, namely P, 

~' is a cone over ~' with vertex P (cf. 4.1.2). 
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(b) The assertion follows from 4.1.4 and 4.4.3. o 

Also in this case we consider a particularly important special case in more detail: 

4.5.4 Theorem. Let ~ be a hyperbolic quadratic set in P = PG(5, q). Then a = 

(q + 1)2 and 

The prooffollows from 4.5.3 together with 4.4.1. o 

A hyperbolic quadratic set has an extremely remarkable property: one can divide 

its maximal ~-subspaces sets into two equivalence classes. The equivalence rela­

tion is given by the property that the corresponding subspaces intersect in a sub­
space of a certain parity. 

In a 3-dimensional projective space we already know that the maximal ~_ 

subspaces of a hyperboloid are the lines of a regulus and its opposite regulus. If 
we define that two ~-lines are equivalent if they are equal or skew we get two 
classes of ~-lines. 

Since the case d = 5 is particularly important (and will be studied in the next 
section in great detail) we shall first consider this case. 

Definition. Let ~ be a hyperbolic quadratic set of a 5-dimensional projective 
space P. We say that two ~-planes 'RI, 'R2 are equivalent (and we shall write 

'RI - 'R2) if 'RI and 'R2 are equal or intersect each other in precisely one point. 

Obviously, the relation - is reflexive and symmetric. Surprisingly, it is also tran­
sitive: 

4.5.5 Lemma. Let ~ be a hyperbolic quadratic set of a 5-dimensional projective 
space P. Then the relation - is an equivalence relation. 

Proof We only have to show that - is transitive. Let nI, 'R2, 'R3 be three ~­
planes such that nI and 'R2 intersect in precisely one point P, and 'R2 and 'R3 
intersect in precisely one point R. 

Since all lines of 'RI and 'R2 through P are tangents it follows that 'RIo 'R2 0;;;; 

~p, therefore ~p = ('Rj, n2)' Similarly it follows that :2R = ('Rz, 'R3)' 
Case 1. P = R. 

Consider a complement W of P in H =!ip and define ~':= ~n W. Let 
gi = 'Ri n W (i = 1,2, 3). By 4.5.3 we know that ~' is a hyperboloid. Since gI 

and g2 are skew they belong to the same class of ~'. Similarly, g2 and g3 are 
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skew, so they belong to the same class of 5fL'. From these together it follows that 

gl and g3 also belong to the same class of 5fL'. This means that 7t1 (17t3 = P. 

Hence 7t1 ~ 7t3' 
Case 2. p"# R. 

In this case the plane 7t3 is not contained in 5fLp. (Otherwise (P,7t3) would be 

a !'L-subspace.) Hence 7t3 intersects the hyperplane 5fLp in a line g3' 
Let W be a complement of P in !'Lp containing g3, and define !'L' := !'L(1 W. 

Then !'L' is a hyperboloid, and gl := 7t1 (1 W and gz:= 7tz (1 W are lines of the 

same class of !'L'. Since g3 intersects the line g2 in the point R, g3 belongs to 
the other class. This implies that gl and g3 also intersect each other in some 
point S. Thus, 7t) and 7t3 intersect each other just in the point S. This implies 

1t) ~ 7t3' 0 

In general, the fewer equivalence classes an equivalence relation has, the 
'stronger' it is. The strongest equivalence relations are those having just two 
equivalence classes. 

4.5.6 Theorem. Let !'L be a hyperbolic quadratic set of a 5-dimensional projec­
tive space P. Then the set of all !'L-planes is partitioned into exactly two equiva­
lence classes with respect to ~. 

Proof Let 7t1 and 1t2 be two !'L-planes that intersect in a line g. So they belong 
to different equiValence classes. We have to show that each !'L-plane 1t belongs 
to one of these equivalence classes. 

The subspace V:= (1tb 1t2) spanned by 7t) and 1t2 has dimension 3, and the 

quadratic set induced by !'L in V consists only of the points in 1t1 and 1t2' 
W.l.o.g. we may assume that 7t"# 7tb 7t2' By the dimension formula, the plane 

1t intersects the subspace V, the intersection being contained in 1t) U 1t2' Since 
1t is not contained in V, 1t cannot intersect both planes in different lines since 

otherwise 7t ~ V. If 1t intersects both planes in one point not on g then the 
joining line is a !'L-line contained in V, a contradiction. 

Assume that 1t intersects V in the points of g. Consider a point P on g. By 

4.5.3, !'L induces in any complement W of P in !'Lp a hyperboloid. However, 
the point in which V and g intersect is on three distinct !'L-planes; thus, in W, 
this point is on three distinct !'L-lines. This is a contradiction since !'L (1 W is a 

hyperboloid. 
Hence 7t intersects either one of the planes 1tlo 1tz in a line and the other in a 

point, or only one of the planes in exactly one point. In any case 7t belongs to the 

equivalence class of 1t1 or to the equivalence class of 1t2' 0 
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With a little more technical effort one can generalize 4.5.5 to higher dimensions. 

~efinition. Let !'L by a hyperbolic quadratic set of a (2t + 1 )-dimensional projec­
tIve space P. For any two maximal !'L-subspaces UJ, U2 we define: 

U I ~ U2 :~ t + dim(U) (1 U2) is even. 

We shall deal with the case t = 3, and leave the general case as a challenging ex­
ercise for the reader (see exercise 19). 

4.5.7 Theorem. Let !'L be a hyperbolic quadratic set in a 7-dimensional projec­
tive space P. Then ~ is an equivalence relation with exactly two equivalence 
classes. 

Proof First we show that ~ is an equivalence relation. In order to do this we have 
only to show that ~ is transitive: Let U), Uz, U3 be 3-dimensional !'L-subspaces 

s~ch that U I ~ U2 and U2 ~ U3. This means that dim(U I (1 U2) and 
dIm(U2 (1 U3) are odd. If U I (1 U3 = 0 then dim(U I (1 U3) = -1, hence 
U I ~U3' 

Therefore we may assume that there is a point S in U) (1 U3. 
Case 1. S E U2. 

In this case we have that U b Uz, U3 ~ %. Consider a complement W of S 
in %. Then, by 4.5.3, !'L (1 W is a hyperbolic quadratic set. If we define 
Wi:= Ui (1 W (i = 1, 2, 3) we see that W I ~ W2 and W2 ~ W 3; thus, by 4.5.5 
we have W I ~ W 3, as well. Therefore, U I ~ U 3. 
Case 2. S E UZ' 

Then U2 ($. %. Let W 2 := U2 (1 %, and consider a complement W of S in 
% that passes through W2; fmally let Wi:= Ui (1 W (i = 1,3). Since 

W2 (1 Wj = W 2 (1 Uj = U2 (1 Ui 

dim(W2 (1 W i) is odd; therefore W2 is not equivalent to Wj Ci = 1, 3). Thus 

W I and W 2 as well as W 2 and W3 are in distinct equivalence classes. Since 
by 4.5.6 there are only two equivalence classes we have that W I ~ W 3 and there­
fore U I ~ U3. 

It remains to show that there are exactly two equiValence classes. Let U b U2 
be two 3-dimensional !'L-subspaces that intersect in a plane 1t. We have to show 
that each 3-dimensional !'L-subspace Uo is equivalent to U I or to U2. 

The subspace V:= (U b U2) has dimension 4, and we have !'L(1 V = 

U I U U2· Moreover, Uo intersects the subspace V in at least one point of 
U 1 uU2· 
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Assume that Uo (\ V ~ n. Let P be a point of Uo (\ U I (\ U2 . Then we have 
that Uo, U J, U2 ~ ~p. Hence in a complement W of P in ~p, the subspaces 
W i := U i (\ W (i = 0, 1, 2) are three maximal subspaces, where W I is not 
equivalent to W2 . By assumption, Uo intersects U I and U2 in a subspace con­
tained in U j (\ U2. Thus, Wo also intersects W I and W2 in a subspace con­
tained in W I (\ W2. In particular Wo (\ W I and Wo (\ W2 have the same di­
mension, which contradicts 4.5.6. 

In view of ~(\ V = U I U U2 the subspace Uo cannot contain a point of 
U I \n as well as a point of U2 \n. Thus, w.Lo.g. we have 

UonV~UI' 

Now there are three possibilities: either Uo intersects the plane n (and therefore 
U2) in one line and we have that Uo ~ U2, or Uo intersects n in just one point 
(and therefore U I in a line) and we have that Uo ~ UJ, or Uo n n = 0; then also 
Uo n U2 = 0, so Uo - U2. In any case Uo belongs to the equivalence class of 
U I or that of U2. 0 

To conclude this section we shall present a diagram of a hyperbolic quadratic set. 
(We have introduced diagrams in Section 1.7.) 

Let us consider a hyperbolic quadratic set ~ of a 5-dimensional projective 
space P. Then the points, lines, and planes of ~ form a geometry of rank 3. 
Moreover, the residue of each plane - the points and lines incident with that plane 
- is a projective plane, and the residue of each point P - the ~-lines and ~­

planes incident with P - is a hyperbolic quadratic set of a 3-dimensional projec­
tive space. Since all ~-lines through P lie in ~p and since, by 4.5.4, ~(\ ~p is 
a cone over a hyperbolic quadratic set of a 3-dimensional projective space, the 
assertion follows. 

So, from an incidence-geometric point of view, the residue of a point of ~ 
consists of a regulus and its opposite regulus. In order to present a diagram for ~, 
we therefore need a symbol for those geometries. Such an incidence structure is a 
special case of a 'generalized quadrangle', for generalized quadrangles the fol­
lowing symbol has been introduced: 

Definition. A generalized quadrangle is a rank 2 geometry consisting of points 
and lines such that the following properties are satisfied: 
- Any two distinct points are on at most one common line. 
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- All lines are incident with the same number of points; all points are incident 
with the same number of lines. 

- If P is a point outside a line g then there is precisely one line through P in­
tersecting g. 

The last property is the most important and is the justification of the name gener­
alized 'quadrangle'. Examples of generalized quadrangles are the quadrangle and 
a hyperbolic quadratic set of a 3-dimensional projective space (see Figure 4.3). 

D 
Figure 4.3 Examples of generalized quadrangles 

There are much more interesting examples of generalized quadrangles (see exer­
cise 22). The reader who wants to get an impression of this very active branch of 
research should consult [PaTh85]. 

Now we may formulate 

4.5.8 Theorem. The geometry consisting of the points, lines, and planes of a hy­

perbolic quadratic set of a 5-dimensional projective space has the following dia­
gram. 

• o 

4.6 The Klein quadratic set 

Definition. A hyperbolic quadratic set of a 5-dimensional projective space is also 
called a Klein quadratic set (Christian Felix Klein (1849-1925)). 

The KIein quadratic set is particularly important since a 3-dimensional projective 
space is disguised in it. We shall now reveal this secret. 
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Let e l and e2 be the two equivalence classes of planes of a Klein quadratic 
set ~ of a 5-dimensional projective space P. We define a geometry S as fol­

lows. 
The points of S are the planes of el ; 

the lines of S are the points of ~; 
the planes of S are the planes of e2. 
The incidence between a line of S and a point or a plane of S is induced by 

the incidence of P; a point 1tl of S and a plane 1tz of S are incident if the 
planes 1t1 and 1t2 of P are not disjoint. (Then, by 4.5.5, they intersect each 
other in a line of P.) 

4.6.1 Lemma. Let ~ be the Klein quadratic set. 
(a) Each ~-line is on exactly one plane of each equivalence class. 
(b) If P is finite of order q then each point of !:i is on exactly q + 1 planes of 
each equivalence class. 

Proof (a) Let g be an arbitrary ~-line. Consider a point P on g. We know that 

~p n ~ is a cone over a hyperbolic quadratic set !:i". 
The line g meets ~' in some point, which is incident with one line h, h' of 

each of the two classes of ~". It follows that (P, h) and (P, h') are the planes of 

the two equivalence classes through g. 
(b) follows similarly. o 

The above mentioned highly remarkable connection is expressed in the following 

theorem. 

4.6.2 Theorem. The geometry S is a 3-dimensional projective space; more pre­
cisely, S is isomorphic to a 3-dimensional subspace of P. 

Proof We proceed in several steps. 
Claim 1: Any two distinct points of S are incident with exactly one line of S. 

This directly follows from 4.5.5, which says that any two planes of el inter­

sect in precisely one point of ~. 
Claim 2: If two points 1t,1t' of S are incident with a plane 1t2 of S then any 
point of the line incident with 1t and 1t' is also incident with 1t2. (Hence 1t2 is a 
linear set.) Moreover, the structure of points and lines of S incident with 1tz is a 

projective plane. 
The fact that 1t and 1t' are incident with 1t2 means that 1t and 1t' intersect 

the plane 1tz of P in lines g and g'. The intersection P of g and g' is the 
common point of 1t and 1t'. This point P of P is the line in S through 1t and 
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1t'. Since 1t2 E ez' any further plane from el through P intersects 1t2 in a line, 
thus it is also incident with 1t2. This means that each point of S that is incident 
with the line of S through 1t and 1t' is also incident with 1tz. 

By 4.6.1, each line of 1t2 is on exactly one plane of el. Thus the structure of 
points and lines of S that are incident with 1t2 is exactly the structure of lines 
and points of P on 1t2' This is the dual plane of 1t2- Since 1t2 is Desarguesian it 
follows by 3.4.2 and 2.3.5 that (1t2)~ is isomorphic to 1t2' 

Claim 3: Any three points of S that are not on a common line of S are incident 
with precisely one plane of S. 

Let 1t I, 1tz, 1t3 be three points of S that are not incident with a common line 
of S. By definition, these are three planes from el not through a common point 
of ~. Thus the points 

PI := 1t2 n 1t3, P2 := 1t1 n 1t3, P3 := 1t1 n 1t2 

are three distinct points of ~. (They are even noncollinear, since otherwise 1tb 
1tZ,1t3 would be incident with the line through PI> Pz, P3.) 

We shall show: the plane 1t from ez through PI and P2 also passes 

through P3: Since 1t is from ez' 1t1 and 1t2 are from el and since 1t n 1t1 *" 0 
and 1t n 1tz *" 0, the plane 1t intersects the planes 1tJ and 1tz of P in lines gl 
and gz. These lines of 1t intersect in some point X. This point satisfies 

X = gl n g2 = (1t n 1tJ) n (1t n 1t2) h 1tJ n 1tz = P3· 

Therefore X = P3, and hence the point P3 lies in 1t. 
This implies that the plane 1t of S is incident with the points 1t1> 1tz, 1t3 of 

S. There is no further plane with this property, since any such plane would have a 
line in common with 1t2 and a line in common with 1t3; hence it would pass 
through PI. Similarly, it follows that this plane is through P2 and P3; hence it 
would be equal to 1t. 

(1), (2), and (3) imply that S is a projective space (see also exercise 24). We 
have to convince ourselves what the dimension of S is. 

Claim 4: The projective space S has dimension 3. 
For this we show that each line of S and each plane of S are incident with a 

common point of S. Then it follows that each plane is a hyperplane, so S has 
dimension 3. 

Therefore, let P be a line of S and 1t2 a plane of S, which w.l.o.g. are not 
incident. This means that P is a point of ~ and 1t2 a plane in e2 such that P is 

outside 1t2. 
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The tangent hyperplane .\2p intersects 1t2 in a line g. Then 1tJ := (P, g) is a 
.\2-plane, which is in eb since 1t] and 1t2 have a line in common. Hence 1t] is a 
point of S that is incident with the line P and the plane 1t) of S. 0 

This view of Klein quadratic sets enables us to describe hyperbolic quadratic sets 
extremely significantly by another diagram. 

4.6.3 Theorem. Let ~ be a hyperbolic quadratic set of a 7-dimensional projec­
tive space. Then the points, lines, and maximal subspaces of the two equivalence 

classes form a Buekenhout-Tits geometry of rank 4 having the following diagram: 

Here, two 3-dimensional .\2-subspaces are incident if they intersect in a plane. 

Proof The diagram says that the residual of any point and any maximal subspace 
must be a 3-dimensional projective space. 

It is clear that the residual of any maximal .\2-subspace is a 3-dimensional 
projective space. 

Therefore we only have to show that the residual of a point P is a 3-
dimensional projective space. We shall show that this residual is isomorphic to the 
projective space S. In essence, this follows from 4.6.2. Since ~ induces in a 
complement W of P in .\2p a Klein quadratic set ~' the following assertions 
are true. 
- The ~-lines through P correspond to the points of ~', hence to the lines of S; 
- the 3-dimensional ~-subspaces through P correspond to the planes of the two 
equivalence classes .\2', hence to the points and planes of S. 

Thus the assertion follows in fact from 4.6.2. o 

Remark. Here comes a magic word, triaZily. Very roughly, this means that one can 
rotate the above diagram by 120°, and it remains the diagram of a hyperbolic 
quadratic set in the 7-dimensional space. More precisely, given the hyperbolic 
quadratic set .\2 in a 7-dimensional projective space with its two equivalence 
classes ~l and ~ of 3-dimensional subspaces contained in Q, we define a 
new geometry consisting of points, lines, planes and solids in the following way: 
- points are the elements of ~), 
- lines are the lines contained in ~, 

planes are the the incident point-plane pairs (P, 1t), where 1t E ~, 
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- solids are the points of .\2 along with the elements of ~ . 
- Incidence is defined as in the quadratic set with the following exceptions: a 
point and a solid are incident if the corresponding 3-dimensional subspaces inter­
sect in a plane, a plane (P, 1t) is incident with all the elements that are incident 
with P and 1t. 

Then one can show that the new geometry is again a hyperbolic quadratic set in 
the 7-dimensional projective space. For details see e.g. [Cam92J. 

Remark. If one looks at the geometries coming from quadratic sets from an ab­
stract point of view, one gets the so-called polar spaces. The fundamental paper 
for this beautiful theory is [BuSh74]. 

The game is not yet over. Now we turn the tables. We start from a 3-dimensional 
projective space P(V) and construct in an analytic way a Klein quadratic set, 
which will turn out to be an essentially uniquely determined quadric. 

Before doing this we have to introduce the analytic notion of a 'quadric'. 

4.7 Quadrics 

Quadrics are the prototypes of quadratic sets. We have already considered quad­
rics in special cases (see 2.4.4); now we shall study quadrics in general. 

Definition. Let V be a vector space over a (commutative) field F. A map 
q: V ~ F is called a quadratic form of V if the following are true: 
(i) q(a·v) = a2·q(v) for all v E V and all a E F, 
(ii) the map B: V x V ~ F defined by 

B(v, w) := q(v + w) - q(v) - q(w) 

is a symmetric bilinear form. 

4.7.1 Lemma. Let {vb"" vn} be a basis of the vector space V. 
(a) If aij E F then a quadratic form is defined by the following rule: 

n n 

q(Lbjvj):= Laij .btbj' 
j=) j,)=1 

(b) Conversely: for any quadratic form q there are elements aij E F such that 

for all v= Lj=], ... ,nbjvj E V wehave 

n n 

q(Lbtvj):= Laij' bj' 
j=) t,)=) 
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Proof (a) For any bE F we have 

n n n 

q(b·v) = q('f,(bbi ) . vi) := Laij . (bbJ·(bbj ) = b2 . Laij . bibj = b2 ·q(v). 
i=l i,j=l i,j=l 

Moreover, 

B(v, w) = q(v + w) - q(v) - q(w) 
n n n 

= Laij.(bi+Ct)·(bj+Cj) - Laij.btbj - Laij,ciCj 
t,j=l i,j=l i,j=J 

n 

= Laij . (biCj + bjCi)' 
i,j=\ 

Now it is easy to verity that B is a symmetric bilinear form. 
(b) will be handled in exercise 27. o 

Remark. The definition of a quadratic form is so complicated only because one 
wants to include the case of characteristic 2. If the characteristic of F is different 
from 2, then one can reconstruct the bilinear form from the quadratic form (see 
exercise 26). 

Definition. We call the quadratic form q of V nondegenerate if the following 
is true: if q(v) = 0 and B(x, v) = 0 for all x E V then v = o. 

If q is a quadratic form of V then q(v) = 0 implies q(a·v) = 0 for all a E F. 
This is the basis of the following definition. 

Definition. Let q be a quadratic form of the vector space V. The quadric of the 
projective space P(V) corresponding to q is the set of all points (v) of P(V) 
with q(v) = O. 

In view of the above lemma one can now construct as many quadrics as one likes: 
Given a d-dimensional projective space over the field F one takes a homogene­
ous polynomial f over Find + 1 variables. Then the 'corresponding' quadric 
consists precisely of the points with homogenous coordinates (ao: at: ... : ad) 

with f(aO' ab ... , ad) = O. 
For instance, the polynomial x02 - Xj2 - x22 yields a quadric in the plane, 

x02 -x,2 -X22 -x32 and x02 + x\2 -xi -x32 provide quadrics in 3-dimensional 
space. In exercise 28 you are invited to recognize these quadrics in the case 
F=R. 
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Our aim is to show that all quadrics are quadratic sets. First we prove the if­
three-then-all axiom. 

4.7.2 Lemma. Let q be a quadratic form of a vector space V, and let !!l. be the 

corresponding quadric in P(V). Then, if a line g contains three points of ~ 
each point of g lies in !!l.. 

Proof Let P = (v), R = (w), and S be three different points on g in !!l.. W.l.o.g. 
we may assume that S = (v + a·w) with a*- O. Then we have 

0= q(v + a·w) = B(v, a·w) + q(v) + q(a·w) 

= a·B(v, w) + q(v) + a2 ·q(w} 

=a·B(v, w). 

Since a*-O we have B(v, w) = O. Now for each point X = (v + b·w) *- R on g 
we see 

q(v + b·w) = B(v, b·w) + q(v) + q(b·w) 

= b·B(v, w) + q(v) + b2 ·q(w) 

= b·B(v, w) = O. 

Hence each point of g is in !!l.. o 

Definition. Let q be a quadratic form of the vector space V. For a vector v E 

V\ {o} we define 

(v).l..:= {x E V I B(x, v) = O}. 

4.7.3 Lemma. Let q be a quadratic form of the vector space V, and let !!l. be the 
corresponding quadric of P(V). Then for each vector v E V\ {o} we have: 

(a) (v).l.. is a subs pace of V, hence also a subs pace of P(V). 
(b) Either (v)L is a hyperplane, or we have (v).l.. = V. 
(c) Suppose that (v) E !!l.. Then each line in (v)L through (v) that contains 
another point (w) E !!l.\{(v)} contains only points of !!l.. This means that each 
line in (v).l.. through (v) is a tangent of !!l.. 
(d) Suppose that (v) E !!l.. Then each line through (v) that is not contained in 
(v)L intersects !!l. in precisely one further point. 

Proof (a) follows directly from the fact that B is a bilinear form. 
(b) It is sufficient to show that any line g = (u, w) of P(V) intersects the sub­
space (v).l.. in at least one vector different from 0: We may assume that 
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(w) fl (v)1-. Thus, B(w, v) '* O. Let X = (u + a·w) be an arbitrary point on g dif­

ferent from (w). Then 

X E (v)1-

~ B(u +a·w, v) =0 

~ B(u, v) + a·B(w, v) = 0 

~ a 
B(u, v) 

B(w, v) 

(c) Let (v + a·w) be an arbitrary point '* (w) on the line g = (v, w). We have 

that 

q(v + a·w) = B(v, a·w) + q(v) + q(a·w) 

= a·B(v, w) + q(v) + a2·q(w) = O. 

(d) Suppose that (w) E P\(v)1-, and let (w + a·v) be an arbitrary point on the 

line (v, w) that is different from (v). Then it follows that 

q(w + a·v) = B(w, a·v) + q(w) + q(a·v) 

= a· B(w, v) + q(w). 

From q(w + a·v) = 0 it follows that a = -q(w)/B(w, v). Hence the line (v, w) 

intersects the quadric !!L in the points (w - q(w)/B(w, v)·v) and (v). 0 

4.7.4 Theorem. Each quadric is a quadratic set. 

Proof By 4.7.2, the if-three-then-all axiom holds. In view of Lemma 4.7.3 for any 
point (v) of a quadric, the subspace (v)1- is the corresponding tangent hyper­
plane. 0 

Remark. A fundamental theorem of F. Buekenhout says that any nondegenerate 

quadratic set is a quadric or an ovoid (see [Buek69a]). We have already proved 
this for hyperbolic quadratic sets in 3-dimensional projective spaces. In Section 

4.8 we shall prove the analogous statement for Klein quadratic sets. 

In the cases d = 2 and d = 3 the corresponding theorems were first proved by B. 
Segre [Seg54] and A. Barlotti and Panella. The theorem of B. Segre is particularly 
remarkable: 

4.7.5 Theorem. Any oval in a jinite Desarguesian projective plane of odd order is 

a conic, that is a nonempty, nondegenerate quadric in a projective plane. 
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4.8 PlUcker coordinates 

Let P(V) be a 3-dimensional projective space over a field F such that the points 

and planes are represented by homogeneous coordinates. Our aim is to represent 

the lines by homogeneous coordinates as well. The method we shall present in the 
following is due to Julius PlUcker (1801-1868). 

Definition. Let g be a line of P(V) that passes through the points 

x3) and (yo: YI: Y2: Y3)' We define the following elements: 

XII Ixo ,P02 = 
YI Yo I

XO 
POI = 

Yo 
X21, P03 = 11 Xo X31 
Y2 Yo Y3 ' 

P23=I
X

2 X31,P31=IX3 XII,PI2=IXI X21· 
Y2 Y3 Y3 YI YI Y2 

Then the 6-tuple (PI: P2: P3: P4: P5: P6) := (POI: P02: P03: P23: P31: P12) is called 
the Pliicker coordinates of the line g. 

In the following lemma we shall collect the basic properties of Plucker coordi­
nates. 

4.8.1 Lemma. (a) Up to a scalar multiple. the PlUcker coordinates of a line g 
are independent of the choice of the two points on g; in other words. the PlUcker 
coordinates of a line are welldejined. 

(b) The PlUcker coordinates of a line are determined only up to a scalar multiple; 
therefore they are homogeneous coordinates. 

(c) The Plucker coordinates P = (PI: ... : P6) of a line satisfY the following 
quadratic equation: 

PI P4 + P2P5 + P3P6 = O. (*) 

(d) Suppose that PI> .. "P6 are elements of F such that at least one Pi'* O. If 
the PI>' . "P6 satisfY the equation (*) then there is a line of S having PlUcker 

coordinates (PI>' . "P6)' 

Proof (a) Let Z = (zo: zl: z2: z3) = a·(xo: XI: x2: x3) + (yo: Y( Y2: Y3) be an arbi­
trary point on g = XY different from X. Then the Plucker coordinates 
(ql: ... : %) of the line through X and Z are obtained as follows: 

ql = la.x:
O
+ Yo a.x~l+ YII = I:~ :~ I =Pb 
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etc. Hence the Plucker coordinates with respect to X and Z are the same as 
those with respect to X and Y. Thus the Plucker coordinates of g are independ­
ent of the choice of the two points. 

(b) If one replaces (xo: xl: x2: x3) by a·{xo: XI: x2: x3) then the Plucker coodi­
nates of the line through a,(xO:xl:x2:x3) and (Y0:Y(Y2:Y3) are 

a'(PI: ... : P6)' 

(c) We define 

F(P):= PIP4 + P2P5 + P3P6 = POlP23 + P02P31 + P03P12' 

By patient computations one gets after a while 

F(P) = I;~ ;: I'I;~ ;~ I + );: ;~ I'I;~ ;: I + I;~ ;~ 1·1;: ;~ I 
=(xOYI-YOxl)'(X2Y3-Y2 X3) 

+ (xOY2 -YOx2)-(x3Y\-Y3 x \) 

+ (xOY3 - Yo x3)-(xI Y2 - YI x2) 

=xOx2YI Y3 -xOx3Yl Y2 -xl x2YOY3 + Xl x3YOY2 

+ Xo x3 YI Y2 - Xo XI Y2Y3 - x2 x3 YOYI + XI x2YOY3 

+ xOxl Y2Y3 -xOx2YI Y3 -xl x3YOY2 + x2 x3YOYI 

=0. 

(d) W.Lo.g. POI * O. We define the points X' and Y' of S as follows: 

X':= (O:POI:P02:P03), Y':= (-POI: O:PI2: -P31)' 

Then X' and Y' are two distinct points of S. The Plucker coordinates of the line 
X'Y' are computed as follows: 

POll o = POI'POl> 

P02' = I 0 POll = POI 'P02, 
-POI P12 

P03' =! 0 P03! = POI'P03, 
-PO 1 P31 

4.8 PlUcker coordinates 

in view of (*), 

, ! P03 POll P31 = 0 = POI'P3b 
-P31 

PI2' = I POI P021 = POI 'PI2' 
o PI2 

Putting these together we get 

(POl':·· ·:pd)=Poi"CPOI:·· ,:PI2)' 

167 

Hence the line through X' and Y' has the Plucker coordinates (POl: ... : PI2)' 0 

Our next aim is to show that looking at the Plucker coordinates of two lines one 
can see whether these lines intersect each other or not. 

4.8.2 Lemma. Let g and h be two lines of S with PlUcker coordinates P = 

(PI: ... : P6) and Q = (ql: ... : %). Then g and hare skew if and only if the 
expression 

F(p, Q) = PI q4 + P2 q5 + P3 % + P4 ql + Ps q2 + P6 q3 

is different from zero. 

Proof Let X, Y, S, T be points such that g = XY and h = ST, 

X = (xo: xI: x2: x3), Y = (yo: Y1: Y2: Y3), 

By 2.3.1 we know that 

g=h or gnh*0 

<=> {X, Y, S, T} is not a basis of S 

Xo Xl x2 x3 

YO YI Y2 Y3 
=0. <=> 

So SI s2 s3 

to tl 12 t3 

We develop this determinant by the first row and get 
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Xo xI x2 x3 

Yo YI Y2 Y3 

So sI s2 s3 
10 I1 t2 t3 

YI Y2 Y3 Yo Y2 Y3 Yo YI Y3 Yo 
=XO SI S2 S3 -XI So S2 S3 +X2 So SI S3 -X3 So 

t I 12 13 to t2 13 to 11 13 to 

I s2 S31 is) 
=xOYI -XOY21 

12 13 I) 

S31 1 S) S2\ +xOY3 
13 II 12 

1 s2 S31 I So s31 I So S21 -x)yo +xlY2 t I -xl Y3 1 
t2 12 t3 to 3! 0 

+X2YO 1 SI 
t\ 

S31 Iso -x2YI 
13 to 

S31 I So +X2Y3 
13 i to 

SI 1 
I) 

-x3YO ISI 
I1 

S21 1 So +x3YI 
12 to 

S71 I So - -x3Y2 
12 to 

SI 1 
tI 

I s2 S31 1 SI = (XOYI -XIYO) + (X2YO-XOY2) 
12 13 tI 

S31 
t3 

I 
So S21 I So SI 1 +(x3YI-xIY3) +(x2Y3- x3Y2) t t 

l to 12 0 I 

= POI'q23 + P02'q31 + PQ3'QI2 + PI2'QQ3 + P31'Q02 + P23··QOI 

= PI'Q4 + Prq5 + P3'% + P4'ql + Pyq2 + P6'q3 

=F(P, Q). 

This is the assertion. 

We now study the function F considered in the proof of 4.8.1, 

F(P) = PI P4 + P2P5 + P3P6, 

where P = (PI: ... : P6)' 

YI Y2 

S1 S2 
tI 12 

o 

4.8 Plucker coordinates 
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4.8.3 Lemma. Let P = (P( ... : P6) and Q = (ql: ... : %) be Plucker coordi­
nates of two lines of S. Thenfor all a, b E F we have 

F(a·P + b·Q) = a2 ·F(P) + b2·F(Q) + ab.F(P, Q). 

Proof We simply expand the left-hand side: 

F(a·P + b·Q) 

= F(apl + bq), ... , aP6 + b%) 

= (aPI + bq\Hap4 + bq4) + (aP2 + bq2)·(ap5 + bq5) 

+ (aP3 + bq3HaP6 + b%) 

= a
2

'(PI P4 + P2P5 + P3P6) + b2'(qI q4 + q2 q5 + q3 %) 

+ ab· (PI q4 + ql P4 + P2 q5 + q2P5 + P3 % + Q3P6) 

= a2 ·F(P) + b2 ·F(Q) + ab·F(P, Q). o 

Definition. Let P be a 5-dimensional projective space represented by homogene­
ous coordinates. The set 3C of points P = (PI: ... : P6) satisfying F(P) = 0 is 
called the Klein quadric (sometimes also Plucker quadric). 

We shall show that the Klein quadric justly bears its name. More precisely, we 

shall prove that JC is a quadric and forms a Klein quadratic set. We shall also 
show that any Klein quadratic set is a quadric. 

4.8.4 Theorem. Let P be a 5-dimensional projective space. Then JC is a hyper­
bolic quadric, hence a Klein quadratic set. 

Proof By 4.7.1, F is a quadratic form, so J{ is a quadric. Next we show that X 
is nondegenerate. In order to do this we have to show that for each point P E X 

its tangent space is only a hyperplane. The tangent space consists of the points 

(P)..l := {X E P I B(X, P) = O}, 

where B(X, P) = F(X + P) - F(X) - F(P). Using the function F defined in 

Lemma 4.8.2 it follows in view of 4.8.3 that the tangent space consists precisely 
of those points X E P that fulfil 

B(X, P) = F(X, P) = O. 

Since P"* (0: 0: 0: 0: 0: 0), this is the equation of a hyperplane. 

Hence X is a nondegenerate quadric, and in particular a nondegenerate quad­
ratic set in P. We now show that JC has index 3. For this it is sufficient to show 
that JC contains a plane. 
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We consider the point P = (1: 0: 0: 0: 0: 0). The tangent hyperplane Xp con­
tains all points X = (0: xZ: x3: 0: 0: 0) of the line g passing through (0: 1: 0: 0: 
0: 0) and (0: 0: 1: 0: 0: 0). Since any point of g lies in X, (P, g) is a X-plane. 

So X is a hyperbolic quadratic set. 0 

Our next aim is to prove that conversely each Klein quadratic set is a quadric. For 
this we consider in a 5-dimensional projective space the set mL of quadruples (a, 
ab ab (3) of planes with the following properties: there is a plane 13 such that 

(i) a is skew to 13, 
(ii) each plane ai intersects 13 in a line gj (i = 1, 2, 3), 
(iii) the lines gl> gb g3 are distinct and and do not pass through a common point, 
(iv) the subspaces (ab az), (ab (3)' and (a3' al) are distinct 4-dimensional 

subspaces of P. 
First we show that each hyperbolic quadratic set contains such a quadruple. 

4.8.5 Lemma. Let P be a 5-dimensional projective space and ~ be a Klein 
quadratic set in P. Then ~ contains a quadruple (a, al> az, (3) of ~-planes of 

the above defined set mL. 

Proof By Theorem 4.6.2 any Klein quadratic set is a 3-dimensional projective 

space S. In this space, there exist three noncollinear points PI' Pz, P3 outside a 
plane 7t. The noncollinear points of S are planes of ~ mutually intersecting in a 

point, but not having a common point. We denote these planes by aI, az, a3 and 
the plane spanned by their points of intersection by 13· Therefore, each plane ai 
intersects 13 in a line gi (i = 1, 2, 3) and these lines are distinct and form a tri­
angle. The plane 7t of S corresponds to a plane a of ::2 which is disjoint from 

ai (i = 1,2,3) because the points Pi are outside 7t. 

It remains to show that condition (iv) holds. For this we assume that (ab az) = 

(az, (3)' Then the tangent hyperplane H with respect to al n az contains ~e 
three planes aI, aZ, a3' But this is impossible, as H is a cone over a hyperbohc 

quadratic set (see 4.5.3). 0 

4.8.6 Lemma. Let P be a 5-dimensional projective space, and denote by G its 

group of collineations. Then G acts transitively on mL. 

Proof Let (at, aI', az', a3') and (a, al> ab (3) be two elements of mL. 
Since G acts transitively on pairs of skew planes (see exercise 32), there is an 

element of G mapping at onto a and 13' onto 13. So we can identify at with 

a, and 13' with 13· 
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Next we show that the subgroup of G fixing a and 13 induces all central 
colIineations of 13: Each central collineation of 13 may be extended to a central 
collineation of P whose axis contains a. Since the group generated by the cen­
tral collineations acts transitively on the triangles, there is a collineation mapping 

gl' ontogJ>g2' onto g2,and g3' onto g3' 
Now we have the following situation. Let ab a/ be planes through gi such 

that (a, aI', a2', a3') and (a, ab a2, (3) satisfy the hypothesis of the lemma. 
We have to show that there is an element of G fixing a and 13 and mapping a/ 
onto ai (i = I, 2, 3). 

First, we map aI' onto al in such a way that a and gi are fixed. Observe 
that the 3-dimensional subspace (ab al') intersects the plane a in a point P. 
This point has the property that there is a line through it intersecting al and aI' 
in different points. Furthermore, let H be a hyperplane through 13 that contains 
neither aI' nor al' Then there is a central collineation y with centre P and axis 
H mapping aI' onto al' Because the centre P of this central collineation is a 
point of a the plane a remains fixed as a whole. Furthermore, the points of H, 
in particular the points of gb are fixed. 

Next, we map a2' onto a2' We consider a hyperplane H through (13, al) 
that contains neither a2' nor a2, and the point P on a that is also contained in 
(a2, a2')' As above, there is a central collineation y with axis H and centre P 
mapping a2' onto a2, fixing a as a whole and all points of al and 13· 

Finally, we have to map a3' onto a3' For this, let H be the hyperplane 
through al and a2' By definition of the set mL, neither a3' nor a3 is contained 
in H, but g3 = al n az lies in H. Let P be the intersection of (a3, a3') and a. 
Then there is a central collineation y with axis H and centre P mapping a3' 

onto a3' fixing a as a whole and the points of al and a2' 
This finishes the proof. 0 

4.8.7 Lemma. Let P be a 5-dimensional projective space and ~l and ~ hy­

perbolic quadratic sets. If ~I and ~ coincide in a set {a, a', a"} of planes, 
where a' and a" intersect in exactly one point P and a is disjoint from a' 
and a", then ~I and ~ coincide in their points in the tangential hyperplane 

(a', a") of P. 

Proof Let H be the tangential hyperplane of ~l in P. Then H = (a', a"), be­
cause al and a2 are contained in H. The hyperplane H intersects a in a line 
g. Let W be a complement of P in H containing g. By 4.5.3 we know that ~' 
= ~l n W is a regulus. The regulus ~' contains the three lines a n H = g and 
ai n H (i = 1, 2), therefore, by 2.4.3, it is uniquely determined by these lines. 
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Therefore, 52' = ~I n W = ~ n W. Because ~l n H and ~ n H are cones 
over this regulus, ~I and ~ coincide in their points in H. 0 

4.8.8 Theorem. Each Klein quadratic set is a quadric. 

Proof Let ~I be a Klein quadratic set and ~ a Klein quadric. By Theorem 
4.8.4 it follows that ~ is also a Klein quadratic set. We show that there is a col­
lineation of P mapping ~l onto ~. This proves that 521 is a quadric. 

By Lemma 4.8.5 and Lemma 4.8.6 we know that ~l and ~ each contain an 
element of ~ and that there is a collineation mapping one element of ~ onto 
the other. Therefore we assume that 521 and ~ contain the same element (a, a I> 
a2, (3) of ~ In the following we shall show that any two hyperbolic quadratic 
sets having such a quadruple in common are equal. This proves the theorem. 

Let Pt = a2 n a3, P2 = at n a3, P3 = al t1 a2, and gl = P2P3, g2 = P I P3, g3 

=P I P2· 
By Lemma 4.8.7 both quadratic sets coincide in their points in the tangential 

hyperplanes at Pi (i = 1,2, 3). In the tangential hyperplane H = (aj, (2) at P3 
the quadratic sets are cones over a regulus. One equivalence class of this cone 
contains the planes al and a2' Since each point X of the line g3 lies on one 
plane of this equivalence class, there are two planes through X that have ~I and 
~ in common intersecting only in X, namely the plane of the equivalence class 
through X and a3' Exactly one of the planes of this equivalence class intersects 
a. We denote the point of intersection of this plane with g3 by X3. Thus, for all 
points "* X3 of g3 the conditions of Lemma 4.8.7 are satisfied and so both quad­
ratic sets coincide in their points in the tangential hyperplanes of these points as 
well. 

In the same way we define Xl and X2. Using the same arguments as above, 
we see that both quadratic sets coincide in their points in the tangential hyper­

planes in all points "* Xi of gi (i = 1,2,3). 

Let R be an arbitrary point of 521, and denote by H the tangential hyperplane 

of R. Then H intersects each line gi' i = 1,2,3. If H intersects the line gi in 
the point Xi' then (XI> X2, X3) = (PI> P2, P3) is contained in H. Therefore, in 
all cases, there is a point X"* Xi on some line gi (i = 1,2,3) contained in H. 
Thus, the line RX is a 521-line, and therefore contained in the tangential hyper­
space of X. Moreover, the point R lies in the tangential hyperspace of X and 

thus also in ~2' 0 

4.9 Application: storage reduction for cryptographic keys 173 

4.9 Application: storage reduction for cryptographic keys 

Let us consider a network in which any two participants can communicate with 
each other. This communication should be secret: for any two participants it 
should be possible to exchange messages in encrypted form. 

In order to do this one applies a so-called symmetric enciphering algorithm. 
Such an algorithm assigns to any data d a ciphertext c in such a way that a 

secret key K is involved. More formally we can describe this procedure as fol­
lows. 

Let ill,~, and JC be sets; the elements of 'lJ are called plaintexts (or data), 
the elements of ~ are the ciphertexts (or messages), and the elements of JC are 
called keys. An enciphering algorithm is a map f: 'lJ x JC -+ ~ with the prop­
erty that for any k E JC the map fk: ~) -+ ~ that is defined by 

fk(d) := fed, k) 

is invertible; we denote the inverse map of fk by fk -I. 

We consider the following model (see Figure 4.4): Sender and recipient agree 
upon a key k E JC and keep it secret. The sender enciphers the message m us­
ing fk and sends the ciphertext c = fk(m) to the recipient. Using fk- I , the recipi­
ent is able to decipher the ciphertext c: 

key k key k 

! ! 
_d_a_t_a_m ___ D_C_iP_h_e_rt_e_x_t_c_=_f,_k(_m_) __ D __ d_a_ta_m __ 

sender recipient 

Figure 4.4 Enciphering and deciphering a message 

Roughly speaking the security of an enciphering algorithm is based on the fact 
that an attacker does not know the actual key and, therefore, cannot decipher the 
ciphertext. 

Clearly, there are enciphering algorithms of quite different levels of security. 
One requirement is that even if an attacker knows a large amount of ciphertexts it 
should not be possible to compute the key. There exist many investigations con­
cerning this problem, which we will omit here. 

We shall study a problem that is completely independent of the algorithms 
used: in order that any two of v participants can secretly communicate with each 
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other they have to have a secret key that must not be known to any third person 

(otherwise this person could decipher the ciphertext). 
Thus every participant has to store v-I keys. This provides a serious problem 

if one takes into consideration that in practice values such as, for instance, 
v = 10000 often occur. Note that these keys have to be stored in such a way that 

they cannot be read in an unauthorized way. 
The question is whether the participants can store fewer secret data without de­

stroying the overall security. The idea being that from the specific secret data of 

two participants their communication key will be computed. 
We shall consider the following model, which is based on geometrical notions. 

Let G = (9), ffi) be a rank 2 geometry with points and blocks. We identify the par­

ticipants with the points of G. A key distribution centre assigns to each block B 
secret information kB' which will be called a prekey. A participant obtains such a 
prekey kB if and only if 'his' point is incident with the block B. If G has the 
property that each point is on exactly r blocks then each participant obtains ex­

actly r prekeys. 
If two participants P and Q want to secretly communicate then they compute 

their communication key kPQ from the secrets kB of those blocks B that are 
incident with P and Q. The computation of kPQ is performed using a public 
procedure. For instance, if the prekeys are binary sequences, one can concatenate 
the prekeys in a predefined order. A particularly simple case is when any two 
points of G are on a constant number 1 of blocks and each prekey consists of 

just one bit. Then each communication key would have exactly 1 bits, if one 
used the above described procedure. 

To sum up: 
- All participants know the geometry G and the assignment of the participants 

to the points of G. 
- Each participant P knows the prekeys belonging to the blocks B through P. 
- In order to compute the communication key between P and Q one applies a 

public procedure on the prekeys kB' where B runs through all blocks through P 
and Q. Note that this is possible for P as well as for Q. 

How can one 'measure' the security of such a procedure? Does it depend on the 
geometry G? As measure for the security of this procedure we choose the number 

of fraudulent participants that have to pool their prekeys in order to compute the 

communication key between P and Q. 
More precisely we define the number k(G) as the largest number k having 

the following property: for no pair {P, Q} of participants is there a set of k par-
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ticipants that does not contain P or Q such that using their prekeys these par­
ticipants can compute the communication key kPQ of P and Q. In this case one 
says that the system is resistant against a collusion of k(G) participants. 

It turns out that a particularly good system is the geometry constructed from an 
ovoid. 

4.9.1 Theorem. Let (9 be an ovoid of a finite projective space P = PG(3, q), and 

let G be the geometry that consists of the points of (9 and of the planes that in­
tersect (9 in an oval. 

(a) Through any point of (9 there are exactly r = q2 + q 'oval planes'. 
(b) keG) = q. 

Proof (a) Any point of (9 is on exactly q2 + q + 1 planes, exactly one of which 
is a tangent plane. 

(b) Since no point "# P, Q is incident with two planes through P and Q, one 
needs one point on each of these q + 1 planes. Thus we have k(G) = q. 0 

4.9.2 Corollary. Let G be the geometry from 4.9.1. Suppose that each prekey 

consists of exactly one bit. Then each participant has to store exactly q2 + q se­

cret bits. In the naive model each participant had to store q2.(q + 1) bits. Thus. 
one can reduce the amount of memory by a factor q. 

Proof Since each point of G is on exactly q2 + q blocks the first assertion fol­
lows. Moreover, the length of a communication key is equal to the number of 
blocks through two points, hence q + 1. 

In the naive model, in order to store communication keys of length q + 1 any 
participant has to store (v - 1 ).(q + 1) = q2.(q + 1) bits. 0 

An example will illustrate the above assertion. Let q = 127 (this will result in a 
common key length.) Then, in a network with 1272 + 1 = 16130 participants, 

each participant has to store just 16256 bits, fewer than 1 % of the 2064512 bits 

that each participant would have to store in the naive model. The system tolerates 
a collusion of up to 127 participants without weakening the security. 

Exercises 

1 Let gj and g2 be two lines of a projective plane of order ~ 3, let P be the 
intersection point, and let Pi be a point "# P on gi (i = 1,2). Show that the 
set of points on gj and g2 that are different from P, Pj, P2 is a set of points 
that fulfils the tangent-space axiom, but not the if-three-then-all axiom. 
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2 Give an example of a set of points in a projective space that satisfies the if­
three-then-all axiom, but not the tangent-space axiom. 

3 Let!2 be a degenerate quadratic set that is not a subspace. Show that there 

exist two distinct points P, RE !2 \rad(!2) such that !2R = !2p. 

4 Let!2 be a degenerate quadratic set that is not a subspace. Show that for any 
two distinct points P, R E !2 \rad(!2) with !2R =!2p it follows that the line 

PR intersects rad(!2). 

5 Let P be a finite projective plane of order n. A k-arc of P is a set of k 

points of P no three of which are coHinear. 

Show that k ~ n + 2. 

6 Show that if a finite projective plane of order n contains an (n + 2)-arc then 

n is even. 

7 Let P be a projective plane of order n. Show that a k-arc is an oval if and 
only if k = n + 1. 

8 Show that in PG(3,2) each set of five points in general position is an ovoid. 

9 Let (') be an ovoid of a finite projective space P = PG(3, q). 

(a) Compute the number of tangent planes and the number of planes that in­
tersect (') in an oval. 

(b) Is there a plane that contains no point of O? 

10 Show that in the real affine plane the set of points (x, y) with x4 + y4 = r is 
an oval, but not a quadric. 

11 Is there an ovoid in the real 3-dimensional space that is not a quadric? 

12 Show that in any real projective space there are ovoids that are not qID,ldrics. 

13 Show that in each infinite projective space of finite dimension there is an 
ovoid that is not a quadric. [This is a rather difficult exercise, use transfinite 

induction.] 

14 (a) Show that each sphere in Rn is an ovoid. 
(b) In d-dimensional real projective space, are there nondegenerate quadrics 

that are neither elliptic nor hyperbolic? 

15 Show that each nonempty, nondegenerate quadric of a projective space P 

spans the whole space P. 

16 Is the vertex of a cone over a quadratic set uniquely determined? 
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17 Let !2 be a cone with vertex V over the quadratic set !2*. Then show that !2 
induces in all hyperplanes not through V isomorphic quadratic sets. 

18 Let !2 be an elliptic quadratic set. Characterize the quadratic set !2':= 
!2n H, where (a) H is a tangent hyperplane and (b) H is a nontangent hy­
perplane. 

19 Show the analogue of 4.5.7 for a hyperbolic quadratic set of a (21 + 1)­
dimensional projective space (t 2': 4). 

20 Analogously to 4.5.8 provide a diagram of a hyperbolic quadratic set of a 
(21 + I )-dimensional projective space. 

21 Construct explicitly the geometry consisting of the points and !2-lines of a 
parabolic quadratic set ~ in PG( 4, 2) . 

22 Show that the points and lines of a nondegenerate quadratic set of 4-
dimensional projective space are a generalized quadrangle. 

23 Show that each quadratic set has the one-or-all property: if a point Plies 

outside a line g, then P is joined to exactly one point of g or to all points of 
g. 

24 Look for the exact place where in the proof of 4.6.2 the Veblen-Young axiom 
has been verified. 

25 Analogously to 4.6.3 provide a diagram of a hyperbolic quadratic set of a 
(2t + 1 )-dimensional projective space (t 2': 4). 

26 Let V be a vector space over a field F with char(F) * 2. Show: if B is a 
bilinear form of V, then by q(v):= i . B(v, v) a quadratic form is defined. 

27 Prove 4.7.1(b): 

Let {vh"" vn} be a basis of the vector space V. Then for any quadratic 

form q there are elements ay E F such that for all v = Li=l, ... ,naiv i E V 
one has 

n n 

q(Iaivi) = Lay ·aiaj' 
;=\ ;,j=J 

28 Do you know the quadric in the real projective plane that is given by the 
polynomial x02-xJ2_X22? Which are the quadrics defined by xo2_X12-

X22- x 32, x02+X12-xi-X32, and x02+X12+xi-x32 in a real 
3-dimensional space? 
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29 Determine in each of the above cases the equation of the tangent through a 
point of the quadric. 

30 Show that if a finite d-dimensional projective space contains an ovoid then 
d~3. 

31 Let F be a division ring, let P = P(V) be the 3-dimensional projective space 
over F, and denote by g the line with equations Xo = 0 and xl = O. Fur­
thermore, let A = A(V) be the 4-dimensional affine space over F. 
For any point P = (a, b, c, d) of A we define 

<pep) := «I, 1, a, b), (1, 0, c, d). 

(a) Show that <p is a bijective map of the points of A onto the lines of P 
that are skew to g. 
Cb) How do the lines of A look in this representation in P? 

32 Let P be a projective space, and denote by G its group of collineations. 
Show that G acts transitively on pairs of skew planes. 

True or false? 

D The empty set is a nondegenerate q~adratic set. 

D Any union of two hyperplanes is a degenerate quadratic set. 

D Any union of two subspaces is a degenerate quadratic set. 

D There is a quadratic set having exactly two points. 

o There is a quadratic set having exactly three points. 

D Each elliptic quadratic set is nondegenerate. 

D Any set of points is contained in a quadratic set. 

D Any set of points is contained in a nondegenerate quadratic set. 

o Any plane not through the vertex of a cone in a 3-dimensional projective 
space hits the cone in an oval. 

Let !2 be a nonempty, nondegenerate quadratic set of a projective space. 

D The number of tangent hyperplanes equals the number of points of !2 if and 
only if the index of !2 is 1. 

D PG(4, q) contains an ovoid. 

You should know the/ollowing notions 

D !2 has index t <=> d = 2t. 

D There is always a hyperplane H such that !2n H is degenerate. 

D If H is a tangent hyperplane then dim(rad(.c:!n H)) = o. 

D If P is fmite then, if .c:! has index 1001, then 200 1 ~ d ~ 2003. 

D In a real d-dimensional projective space each quadric has index 1. 

You should know the following notions 
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Tangent, quadratic set, radical, nondegenerate, index, oval, ovoid, hyperboloid, 
cone, cone over a quadratic set, parabolic, elliptic, hyperbolic, generalized quad­
rangle, Klein quadratic set, quadratic form, bilinear form, quadric, PlUcker coordi­
nates. 



5 Applications of geometry to coding 
theory 

When data are stored or transmitted random errors will often occur. It is the aim of 
coding theory to detect or even correct those errors. In the last fifty years coding 
theory has proved to be of both practical and theoretical importance. There exists 
an elaborate theory however, we shall restrict ourselves to the basic facts. The 
interested reader is referred to the standard literature, for instance the 'bible' of 
coding theory [MWSI83]; as an introduction we recommend [Hill86]. Surpris­
ingly enough, when codes are constructed one often uses structures of a geometri­
calor combinatorial nature. In this chapter we will present the foundations of 
coding theory and some of its links to geometry. For the connections to design 
theory see [AsKe92]. 

5.1 Basic notions of coding theory 

All considerations in coding theory are based on the following communication 
model. A sender wants to transmit data to a recipient. These data are transmitted 
via a channel that, despite any amount of care, might not transmit the data unal­
tered - there might be random noise (cf. Figure 5.1), usually due to circumstances 
beyond the sender's control. Probably everybody has experienced the irritation 
caused by poor reception due to 'atmospheric noise' during a favourite TV pro­
gramme. 

Figure 5.1 Atmospheric noise 
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Our communication model looks like Figure 5.2. The sender encodes data d into 
a message c (also called a codeword); this codeword will be transmitted over the 
channel. The recipient decodes the message and tries to detect whether errors have 
occurred or not. If one uses 'error correcting codes' then the original data can 
again be reconstructed. (This means that in Figure 5.2 we have d = d'.) 

sender recipient 

data d data d' 
message c altered 
(codeword) message x 

Figure 5.2 Encoding and decoding of data 

Remark Terminology is not uniform. In order to be consistent with the next 
chapter we shall restrict the term 'message' to the data that were originally trans­
mitted. 

The errors that are dealt with in coding theory are random errors, which excludes 
alterations perpetrated by our next-door neighbours. The errors we investigate are 
alterations of the symbols. Therefore we do not consider 'errors' such as the dele­
tion or addition of symbols. (There are also methods to master those errors; see for 
instance [Bla83].) 

Our first aim is to make precise what we mean for a code to be able to correct 
errors. 

In this chapter a message is always a binary string of length n, hence an ele­
ment of the vector space V:= {O, l}n. (In this chapter V will always denote this 
vector space.) 

The problem we want to study can be described as follows. The channel adds 
to the transmitted vector c (the 'message') an error vector e, so the recipient 
receives the vector x = c + e. The recipient's aim then is to decode x, that is, to 
determine the error vector in order to reconstruct c from x. 

The fundamental notion in coding theory is the Hamming distance. 

Definition. Let v = (vjo ... , vn) and w = (wlo ... , wn) be vectors of V. The dis­
tance d(v, w) of v and w is defined as the number of positions in which v and 
w differ: 
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The distance d is often called the Hamming distance, in honour of Richard W. 
Hamming, one of the fathers of coding theory. 

First we convince ourselves that d bears the name 'metric' not unjustly. 

5.1.1 Lemma. The function d is a metric on V. 

Proof (1) Since d(v, w) enumerates positions, we have d(v, w) ~ 0; moreover 
d(v, w) = 0 if and only if v and w differ in no position, that is if they are equal. 
(2) Obviously we have d(v, w) = dew, v). 

(3) The proof of the triangle inequality is a little bit more tricky. We must show 
that for all u, v, w E V we have 

d(u, w) ~ d(u, v) + d(v, w). 

We may assume that u and w differ precisely at the first a = d(u, w) positions. 
Among those a positions, let there be b positions in which v and w differ; 
furthermore, let there be c positions outside the first a positions in which v and 
w differ (see Figure 5.3). Of course we have d(v, w) = b + c. 

a 
~ 

u x x x x x x x x x x x x 

w 0 0 0 0 0 x x x x x x x 

v x x x 0 0 0 0 0 x x x x 
~ ~ 

b c 

Figure 5.3 

From Figure 5.3 we see d(u, v) = a - b + c. It follows that 

d(u, v) + d(v, w) = a - b + c + b + c = a + 2c ~ a = d(u, w). o 

Whenever a mathematician has a metric, he defines 'spheres' with respect to this 
metric. We shall later see that those spheres are very useful for describing codes. 

Definition. Let v E V, and let r be a nonnegative integer. Then 

Sly) := {x E V I d(x, v) ~ r} 

is called the sphere (sometimes Hamming sphere) of radius r with centre v. 

Now we are able to define what an error correcting code is. 
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Definition. Let t be a positive integer. A subset C of V = {O, 1}n is called a 
I-error correcting code, if any two distinct elements v, WEe satisfY 

d(v, w} 2 2t + 1. 

In other words, a subset C ~ V is a t-error correcting code, if the minimum dis­
tance 

d(C) := min {d(c, c') I c, c' E C, C ~ c'} 

of C is at least 2t + 1. We call the elements of a code its codewords. 

In order to explain the idea behind this definition, we need a little lemma. 

5.1.2 Lemma. Let C be a I-error correcting code. Then 
(a) for each vector v E V there is at most one codeword c E C such that 

d(v, c) ~ t; 
(b) the spheres SAc) with c E C are mutually disjoint. 

Proof (a) Assume that there are two distinct c, c' E C and a vector v E V with 
d(v, c) ~ t and d(v, c') ~ t. Using the triangle inequality we get 

d(c, c') ~ d(c, v) + d(v, c') ~ 2t, 

contradicting d(C) 2 21 + 1. 
(b) follows directly from (a). o 

Now we can justifY the name of (-error correcting code: For messages that are 

transmitted we use only codewords. If during the transmission of a codeword c 
there occur at most t errors, then the received vector x has a distance of at most 
t from c. In view of S.I.2(a) there is just one codeword having distance at most t 

from x. The recipient decodes x to c. 
Here the idea of spheres is particularly helpful: the fact that during the trans­

mission at most t errors occur means that the received vector still lies inside the 

sphere SAc). Since by the above lemma any two spheres whose centres are dis­

tinct codewords are disjoint, the received vector x can be uniquely decoded to the 
centre of the sphere containing x. 

Remark If there are more than t errors per codeword, then the received vector 
usually will not be decoded correctly. In practice one proceeds as follows. First 
one estimates how many errors would occur in the channel, then chooses t ac­
cordingly, and finally constructs a (-error correcting code. 
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Now we are able to say exactly what is the aim of coding theory: to construct 
codes that 
- have a big minimum distance (and therefore good error correcting properties) 

and 
- allow an efficient decoding algorithm. 

We conclude this section with an example of a code. Although this code is still 

rather small, it serves to show that the tools developed so far are not sufficient to 

investigate codes. This code win serve as the running example in this chapter. 

5.1.3 Theorem. The following 16 vectors from V = {O, I} 7 form a I-error cor­

recting code: 

0000000 1111111 

1110000 0001111 

1001100 0110011 

1000011 0111100 

0101010 1010101 

0100101 1011010 

0011001 1100110 

0010110 1101001 o 

In exercise 2 you are invited to investigate this code. 

5.2 Linear codes 

Our approach so far is fairly naive and not very practical. The impracticability 

consists in listing the code (one has to store each codeword), determining the 
minimal distance (a problem of order jCl2), and - last but not least - decoding 

(for each received vector one has to compute its distances from all codewords). 
As a start toward an applicable theory, we say the magic words, 'linear codes'. 

Definition. A code C ~ V is called linear, if C is a subs pace of the vector 
space V (and not only a subset of the set V). In this case C has a dimension, 
which will often be denoted by the letter k; we call C a linear [n, kJ-code. 

One advantage of linear codes is immediate. To work with C one has to know 

only a basis of C. 
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Definition. Let cj, ... , ck be a basis of the linear [n, k]-code C. Then the kxn 

matrix G whose ith row is the basis vector Ct (i = 1, ... , n) is called a genera­
tor matrix of C. 

To store a generator matrix one needs k vectors, a gigantic saving over the 2k 

vectors that constitute C. 

Example. A generator matrix of the code in Example 5.1.3 is 

[

1 1 1 0 0 0 0J 
100 1 100 

G= 1 0 0 0 0 I l' 

o 1 0 1 010 

Also, determining the minimal distance of a linear code is easy compared to the 

general case. 

Definition. The weigbt w(x) of a vector x E V is the number of nonzero posi­
tions of x. In other words 

w(x) = d(x, 0). 

The minimum weigbt w(C) of a code C is defined as 

w(C) := min {w(c) ICE C, C *- o}. 

5.2.1 Lemma. Let C be a linear code. Then 

d(C) = w(C). 

Proof For any code we have that 

d(C) = min {d(c, ct
) I C, c t E C, C *- c t

} 

~ min {d(c, 0) ICE C, C *- o} = w(C). 

For the proof of the other inequality it is sufficient to show that there is a code­
word Co of weight d(C). Let c, ct E C with d(c, ct

) = d(C). Then we have 

w(c - c') = d(c - c', 0) = d(c - c', c' - c') = d(c, c') = d(C). 

Since C is linear, we have that co:= c - ct E C. This proves the assertion. o 
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The lemma implies that in order to determine the minimum distance (and there­
fore the error correcting quality) of a linear code C, one has only to calculate the 
minimum weight of C; for this one needs at most Iq steps. 

To explain how to decode a linear code, we have to introduce a few notions. 

Definition. Let C <;;;; V be a code. The dual code Cl.. is defined as follows: 

Cl..:={vEVlv·c=O forall CEC}; 

where v·c is the 'inner product' of the vectors v = (VI, ... , vn) and c = (cb' .. , 
cn), that is 

v·c = vlcl + v2c2 + ... + vncn-

If V· c = 0 then we shall also say that v and c are ortbogonal. 

Remark. Sorry, the terminology is well established, so we are stuck with calling 
C.l the 'dual' code of C, although 'orthogonal code' would be preferable - and 
C.l has little meaningful to do with the 'dual vector space' of C. One wonders if 
'duel code' had been intended, conjuring up an image of crossed swords. 

5.2.2 Lemma. If C is a linear [n, k]-code then Cl.. is a subs pace of V of di­
mension n - k. 

Proof Independently of whether or not C is linear, Cl.. is always a subspace of 
V. We have to show that the dimension of Cl.. is n - k. 

For this we consider a generator matrix G of C with rows cl,"" ck' Then 
we have 

Cl.. = {v E V I v,ci= 0, i= 1, ... , k}. 

Looking naively at the last line one sees that we seek those v = (vb' .. , vn> E V 
that are solutions of the homogeneous system of linear equations with coefficient 
matrix G. As everybody knows from linear algebra, the dimension of the solution 
space equals n - rank(G). Since the rows of G form a basis of C, necessarily G 
has rank k. Hence we have dime cl..) = n - k. 0 

Of course one can iterate the process of constructing the dual code - constructing 
the dual of the dual code. The following lemma shows that this yields nothing 
new, and hence there is no point in iterating this process. 

5.2.3 Lemma. Let C be a linear code. Then 

Cl..l.. = C. 
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Proof First we show that C ~ Cll: The set Cll consists of all those vectors 
that are orthogonal to all vectors of C.L; these include the vectors of C, since C-L 

is the set of all vectors that are orthogonal to each vector of C. (Hint: Read the 
last sentence once more, but very slowly. Then you will understand it.) 

Applying 5.2.2 to C-L gives 

dim(Cll) = n - dim(C-L) = n - (n - k) = k= dim(C). 

From these results together it follows that C-L-L = C. o 

Definition. Let C ~ V be a linear [n, k]-code. A matrix H whose rows form a 

basis of the dual code C-L is called a parity check matrix of C. 

Since C-L has dimension n - k, any parity check matrix of C has exactly n - k 

rows and n columns. 

In order to convince ourselves that decoding linear codes is significantly sim­

pler than decoding a code in general, we need a further notion, the syndrome of a 
code. 

Definition. Let H be a parity check matrix of the linear code C ~ V. For any 
vector v E V we define its syndrome s(v) as 

s(v) := v·HT, 

where HT is the transpose of H. (Hence, a syndrome is a binary vector of length 
n-k.) 

Using syndromes one can easily describe a linear code. 

5.2.4 Lemma. If C is a linear code with parity check matrix H then 

c = {v E V I s(v) = o}. 

Proof Let v E V be an arbitrary vector. Then 

s(v) = 0 <=> v·HT = 0 

<=> v is orthogonal to all vectors of a basis of C-L 

<=> v E C-L-L 

<=> v E C in view of 5.2.3. o 

The following crucial observation says that a syndrome s(v) depends only on the 
COset containing v. 
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5.2.5 Lemma. Let H be a parity check matrix of a linear code C ~ V. Then for 
all vectors v, w E V we have 

s(v) = sew) <=> v + C = W + C. 

Proof s(v) = sew) <=> v·HT = w·HT 
<=> v·HT -w·HT=o 

<=> (v - w)·HT = 0 

<=> v - W E C by 5.2.4 

<=> v+C=w+c. o 

Now we are able to describe how to decode using a linear code. First one has to 
represent the cosets of C by suitable vectors. 

Definition. Let C ~ V be a linear code. A vector is called a leader of a coset of 
C if it has minimum weight among all vectors in this coset. 

In general, coset leaders are not unique. However, we have the following assertion 

which shows the importance of this concept. 

5.2.6 Lemma. Let C ~ V be a linear t-error correcting code. Then 

(a) each vector of V whose weight is at most t is leader of some coset; 
(b) the leader of a cosel that contains a vector of weight at most t is uniquely 

determined 

Proof We prove (a) and (b) simultaneously. Let v be a vector for which 
w(v)::; t. Consider an arbitrary vector v' E v + C with v' 7' v. We have to show 

that v' has weight at least 1 + 1. 

Since v and v' are in the same coset of C, we have v - v' E C. Since v 7' v', 

v - v' 7' 0, hence w(v - v') ~ 21 + 1 by definition of a t-error correcting code. It 

follows that 

2t + I ::; w(v - v') = d(v - v', 0) = d(v, v') 

::; d(v, 0) + d(o, v') = w(v) + w(v') 

::; 1 + w(v'), 

and therefore w(v') ~ t + 1. o 

Lemma 5.2.6 yields a decoding algorithm: One first determines the coset of C 
containing the received vector x. The error vector of x will be the leader of that 

coset. One then adds the leader to x and gets the codeword back. 
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This procedure can be organized a little more efficiently. 

Syndrome-Decoding: Let C <;;;; V be a linear [n, k]-code that is t-error cor­
recting. One computes a list of all coset leaders and the corresponding syn­
dromes. When a vector x is received one 

- comp1,ltes its syndrome sex), 
- looks up this syndrome in the list of all syndromes. 
- finds the corresponding coset leader e and 

- decodes x to c:= x + e. 
Lemma 5.2.6 guarantees that this decoding procedure works correctly if at most t 

errors occur. 

In order to illustrate syndrome-decoding we look back to Example 5.1.3. First we 
have to determine a parity check matrix. In the next section we shall prove that 

(1 0 0 1 I 0 11 

H = lo 1 0 I 0 I Ij 
00101 I 1 

is a parity check matrix of C. (But you should convince yourself now.) 
The coset leaders are the vectors 0000000, 0000001, 0000010, .... Therefore 

the list of coset leaders and syndromes is the following: 

coset leader syndrome 

0000000 000 

0000001 111 

0000010 011 

0000100 101 

0001000 110 

0010000 001 

0100000 010 

1000000 100 

If, for instance, the vector x = 0010001 has been received we compute its syn­
drome sex) = 110. Then, from the list we find the error vector e = 0001000, and 
we get as codeword 

c = x + e = 0010001 + 0001000 = 0011001. 
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5.3 Hamming codes 

We shall now study the Hamming codes. Here, for the first time in this chapter we 
shall use projective geometry. Hamming codes can best be defined via a parity 
check matrix. 

Definition. Let r be a positive integer and n:= 2r - 1. Consider a binary 
rx(2r -1) matrix H whose columns are the binary r-tuples different from o. 
We define the code Ham(r) by 

Ham(r) := {c = (cl>' .. , cn) E {O, I}n I c·HT = o}. 

In other words, the codewords of Ham(r) are exactly those vectors c for which 
c· HT is the zero-vector oflength r. 

Ham(r) is called the (binary) Hamming code of length n = 2r - I. 

The reader may verify that the code studied in Example 5.1.3 is the Hamming 
code Ham(3). 

Since the matrix H in the definition of a Hamming code has rank r (see exercise 
6), it follows from 5.2.2 that Ham(r) has dimension 2r - 1 - r, so that Ham(r) is 
a linear [2r - 1, 2r - 1 - r ]-code. 

After the construction of a code, the first question one has to answer is how 
many errors it can correct. 

5.3.1 Theorem. The Hamming codes are I-error correcting codes. 

Proof In view of 5.2.1 we have to show that the minimum weight of Ham(r) is 
at least 3. 

First we assume that Ham(r) contains a vector c of weight 1. Let c have a 1 
at the ith position and 0 elsewhere. By definition of Ham(r) it then follows that 

c·HT=o. 

This means that the ith column of H must be 0, a contradiction. Hence Ham(r) 
does not have minimum weight 1. 

Now let us assume that Ham(r) contains a vector that has I in the ith and jth 
positions and 0 elsewhere. Then the sum of the ith and jth columns of H must 

be zero. This is a contradiction since the columns of H are distinct. Therefore 
Ham(r) does not have minimum weight 2. 0 

Hamming codes are not just arbitrary I-error correcting codes but, in a certain 
sense, the best possible such codes, namely those that are most densely packed. 
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Definition. A t-error correcting C ~ V is called perfect if any vector of V has 
distance t or less from (exactly) one codeword. 

One can express this as follows. A code C is perfect if it satisfies 

U SAC) =V, 
CEC 

that is, if the spheres of radius t centred around the codewords fill the whole 

vector space V. 

At first glance it is hard to believe that perfect codes exist, and, in fact, they are 
rather scarce. However, we shall show that Hamming codes are perfect. For this, 
the following lemma will be useful. 

5.3.2 Lemma. Let V = {a, l}n, and let C ~ V be a I-error correcting code. 

Then we have 

2n 

ICI:=:;­
, n + 1 

with equality if and only if C is perfect. 

Proof First we calculate the number of vectors in a sphere SI (c) around a code­
word c: The sphere consists of c itself and all vectors of distance 1 from c - all 
those vectors that differ from c at exactly one position. Since c has n positions, 
there are precisely n vectors of distance I from c. Hence 

Since C is a I-error correcting code, the spheres SI (c) around the codewords c 
are mutually disjoint. Therefore the spheres of radius 1 centred around the code­
words cover exactly 

ICI·(n + 1) 

vectors of V. Since V consists of exactly 2n vectors we get 

Equality holds if and only if any vector of V lies in a sphere of radius 1 around a 
codeword, that is if and only if C is perfect. 0 

As a corollary we get that any perfect I-error correcting code C ~ {O, 1}n has a 
length n of the form 

n = 2r- L 

because ICI ·(n + 1) = 2n implies that n + I is a divisor of 2n. 

5,3 Hamming codes 

5.3.3 Theorem. The Hamming codes are perfect I-error correcting codes. 

Proof Since dim(Ham(r» = 2r - 1 - r it follows that 

IHam(r)1 = 22r - 1 - r. 

In view of n = 2r - 1 this implies 

IHam(r)I·(n + 1) = 22r -1-r·2r = 22r -\ = 2n. 

Thus, by 5.3.2, Ham(r) is perfect. 
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o 
In Hamming codes, syndrome-decoding can be arranged in such a way that one 
does not need additional storage for the coset leaders. For this we recall the defi­
nition of the matrix H: For H we could choose any r x (2r - 1) matrix whose 
columns are the nonzero binary r-tuples; the order in which the columns were 
listed would not yet be important. Now we interpret the columns of H as binary 
representations of the integers 1, ... , 2r - 1 and order the columns in such a way 
that the ith column Si is the representation of the integer i. So, for instance, the 
last column consists only of 1 s. 

5.3.4 Theorem. Let Ham(r) be the code that is constructed using the matrix H 
whose ith column Si is the binary representation of the integer i. Then for each 

vector v E V\ C its syndrome s(v) is the value Si for which v - ei E C. (Here, 
ei is the vector of weight 1 that has a 1 at the ith position.) 

In other words, the syndrome of an erroneous vector shows the position where 
the error occurred 

Proof Let ei be the vector of weight 1 that has a 1 at the ith position. Since the 
code Ham(r) is perfect, any vector v E V \ C is of the form v = c + ej for a 
suitable codeword c and some integer i. This implies 

s(v) = v·HT = (c + ei)·HT = c·HT + er HT = erHT = Si' 

Thus s(v) is the ith column of H; since this represents the number i, one can 
localise the error using s(v). o 

Therefore, the decoding algorithm is extremely simple: 
When a vector x has been received, one simply computes its syndrome sex), 

reads this r-tuple as an integer i, then adds the error vector ej to x to get the 
corresponding codeword. 

A simpler algorithm is hardly conceivable! 
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At the beginning of this section we promised that Hamming codes are connected 
to geometry. An example should make this clear. We consider the Hamming code 
Ham(3); a complete list of its codewords can be found in 5.1.3. 

On the other hand we consider the projective plane P of order 2; we order its 
points as shown in Figure 5.4. 

Figure 5.4 The projective plane of order 2 

Since any codeword of Ham(3) has length 7 we can assign to any codeword c a 
set ~(c) of points of P, where a point Pi is in ~(c) if and only if c has a 1 in 
its ith position. (In other words, the vector c is the characteristic vector of ~ (c).) 
For instance, the codeword c = 1110000 is mapped onto the set ~ (c) = 

{p., P2, P3}· 

What are the point sets of P that correspond to codewords of Ham(3)? One 
easily checks the amazing fact that these sets are - apart from the empty set and 
the whole point set - precisely the lines of P and the complements of the lines of 
P! 

Considering this representation one sees geometrically - and therefore con­
vincingly - that Ham(3) is a perfect I-error correcting code: for this, we have 
only to show that any set of points that does not represent a codeword can be 
made into a codeword by adding or subtracting just one point. 

Let's try. Well, vectors of weight 1, 2, or 6 are easy to decode. A vector of 
weight 3 that is not a codeword corresponds to a triangle of P; by adding one 
point this can made into a quadrangle, hence to the complement of some line (see 
exercise 4). A vector of weight 4 that is not a codeword corresponds to a line to­
gether with a point outside that line; by subtracting this point, the vector can be 
decoded to a line. Finally, let c be a vector of weight 5. Then the point set ~(c) 
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must contain a line, and one easily verifies that ~ (c) is the union of two lines. By 
removing the intersection of these lines one decodes ~(c) to a quadrangle. 

In the last part of this section we deal with the extended Hamming codes. 

Let Ham(r) be the binary Hamming code of length 2r - 1. From this, we get 
the extended Hamming code Ham(r)* by extending each codeword of Ham(r) 
by one position; the entry at this position is made 0 or 1 in order to achieve an 
even total number of Is in each codeword. 

For instance, the code Ham(3)* consists of the following codewords: 

00000000 11111111 

11100001 00011110 

10011001 01100110 

10000111 01111000 

01010101 10101010 

01001011 10110100 

00110011 11001100 

00101101 11010010 

5.3.5 Theorem. Ham(r)* is a linear [2r, 2r -l-r]-code with minimum distance 4. 

Proof First we show that Ham(r)* is a subspace of V* = GF(2)2r. Let Cl * and 

~ * be two arbitrary elements of Ham(r)*, and let c I and c2 be the corre­
sponding codewords of Ham(r). Since cl * + c2 * coincides in the first 2r - 1 
positions with Cl + c2, we have only to show the following: the last position of 
cl* + c2* is 1 if w(cl + c2) is odd and 0 otherwise. 

If Cl + c2 has odd weight then w.l.o.g. Cl has odd weight and c2 has even 
weight. Thus the last entry of Cl * is 1 and the last entry of C2 * is O. Therefore 

the last entry of Cl * + c2 * is 1. If Cl + c2 has even weight then Cl and c2 have 
both even or both odd weight. In either case Cl * and c2* have the same last en­

try and thus the last entry of Cl * + c2* is O. Therefore in both cases Cl * + c2* is 
a codeword, and so Ham(r)* is a vector space. 

Clearly, Ham(r)* has the same dimension as Ham(r) since the two vector 
spaces have the same number of elements. 

Finally, we show that Ham(r)* has minimum weight 4. Since w(Ham(r» = 3, 
we trivially have w(Ham(r)*) 2:: 3. Assume that w(Ham(r)*) = 3. Then there 
would exist a vector of Ham(r)* of weight 3; this is impossible since any vector 
of Ham(r)* has even weight. o 
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5.3.6 Theorem. Suppose that H is a parity check matrix of Ham(r). Then. by the 
following operations. one can obtain a parity check matrix H* of Ham(r)*: 
- adjoin to each row of H a position whose entry is 0, 
- adjoin an additional row that consists entirely of Is. 

Example. Ham(3)* has the following parity check matrix: 

H* = [~ r ~ 
1 1 

Proof In order to construct a parity check matrix of Ham(r) * , we have to con­
sider the dual code. By 5.3.5 the dual code of Ham(r)* is a linear [2r, r + 1]­
code. Therefore, any parity check matrix of Ham(r)* is an (r + 1)x2r matrix. It 
is therefore sufficient to show that the rows of H* are linearly independent and 
are codewords of the dual code of Ham(r)*. 

Since H is a parity check matrix, its rows are linearly independent. Conse­
quently the first r rows of H* are also linearly independent. The fact that the 
last entry in each of the first r rows is 0, while the last entry in the last row is 1, 
implies that all rows of H* are linearly independent. Consequently, H* has rank 
r + 1. 

Since the rows of H are codewords of the dual code of Ham(r), by construc­
tion the first r rows of Ham(r)* are codewords of the dual code of Ham(r)*. By 
definition, each codeword of Ham(r)* has an even number of 1 s. Therefore the 
product of a codeword of Ham(r)* with the last row of H* is also 0. 0 

5.4 MDS codes 

One of the central questions in coding theory concerns codes with a big minimum 
distance. In the framework of linear codes, this question can be made precise as 
follows. 

Let n and r be positive integers. What is the maximum possible minimum 
distance of a linear [n, n - r]-code? 

This question has a surprisingly simple answer. 

5.4.1 Theorem ('Singleton bound'). Let d be the minimum distance of a linear 

[n, n - r ]-code. Then 

d~r+ 1. 
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Proof Let C be a linear [n, n - r]-code. Since C is linear we have only to show 
that C satisfies w(C) ~ r + 1. 

For this we consider a generator matrix G of C. By elementary operations we 
can transform G into a matrix G' in standard form, which is a generator matrix 
of C as well: 

o 
G'= G* 

o 

Since any row vector of G* has at most r nonzero elements, any row of G' has 
weight at most 1 + r. Thus we have 

w(C) ~r + 1. o 

One can also read this theorem in another way. If the length n and the minimum 
distance d are given, a linear code can have a dimension of at most n - d + 1. 
Thus, the number of codewords is limited. 

The case of equality in the above theorem is of particular interest. 

Definition. A linear [n, n - r]-code C is called an MDS code (maximum dis­
tance separable) if it satisfies 

w(C)=r+ 1. 

Most astonishingly the question at the beginning of this section and, in particular, 
questions concerning the existence of MDS codes can be translated into a very 
interesting geometrical problem, which was studied long before its connection to 
coding theory had been noticed. For this translation we need the generalization of 
Theorem 5.3.1. 

5.4.2 Lemma. Let C be a linear code of length n with parity check matrix H. 
Then 

d(C);?: d <=:> each set of d - 1 columns of H is linearly independent. 

Proof Since C is linear we have d(C) = w(C) =: w. 
'<=': Let c = (cb' .. , cn) be a codeword of minimum weight w. Then 
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C·HT=O, 

and so 

clhl + c2h2 + ... + c,JIn = 0, 

where hI> h2' ... , hn are the columns of H. Therefore there are w linearly de­

pendent columns in H. Therefore it follows that w > d - 1. 
0:::::>': Assume that there is a set {hil , hi2' ... , hi) of s::S; w - 1 linearly dependent 
columns of H. Consider the vector x that has 1 in positions ij (j = 1, ... , s) and 

° elsewhere. Then 

x· HT = hi\ + hi2 + ... + his = 0, 

hence x E C. But this contradicts w(x) = s ::s; w - 1. Therefore any w - 1 col­

umns of H are linearly independent. 0 

Now we introduce the geometrical counterpart of a linear code. 

Defmition. A set of n points in a projective space P is called an (n, s)-set if s 
is the largest integer for which every subset of s points is independent. 

Examples. An (n, 3)-set is a set of n points, no three of which are coHinear, but 
at least four of them lie in a common plane. An (n, d + 1 )-set of a projective 

space of dimension d is a set of n points in general position. 

5.4.3 Theorem. Let nand r be positive integers. Then a linear [n, n - r]-code 

with minimum distance d exists if and only if there exists an (n, d - 1 )-set in 

P = PG(r - 1,2). 

Proof Let C be a linear rn, n - r]-code with minimum distance d, and let H be 

a parity check matrix of C. 
By the preceding lemma, the columns of Hare n binary r-tuples, any d - I 

of which are linearly independent. We consider these n vectors as homogeneous 

coordinates of points in PG(r - 1, 2). This set 9JL of n points has the property 
that any d - 1 are independent. Should d points of 9JL be independent, then, 
again by Lemma 5.4.2, the code C would have minimum distance at least d + 1. 

From these results together it follows that 9JL is an (n, d - I)-set. 
Conversely we suppose that there is an (n, d - 1 )-set 9JL in P = PG(r - 1, 2). 

We consider the homogeneous coordinates of the n points of \JJL as column 
vectors of an n x r matrix H. Then H has the property that any d - I of its col­

umns are linearly independent. By Lemma 5.4.2, the cDde C that is defined by 
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C := {x E {O, l}n I x·HT = o} 

has minilflum weight at least d. Since there exist d linearly dependent columns 
of H we have d(C)::S; d. From these results together it follows that d(C) = d. 0 

Example. Using 5.3.5 we see that the extended Hamming code Ham(r)* corre­
sponds to a set of 2r points in PG(r, 2) no three of which are collinear. One ex­

ample for such a set is the set of points outside some hyperplane. (In PG(d, q) the 

points outside some hyperplane have the property that no q + 1 of them are col­

linear; since in our case we have q = 2 the assertion follows.) 

In 5.4.5(a) we shall show that the points outside some hyperplane are the only 
examples of such point sets. 

Definition. (a) A set of points in a projective space is called a cap if no three 
of its points are collinear. 

(b) A set of points in a d-dimensional projective space P is called an arc if 

any d + 1 of its points form a basis of P. An arc having k points is also called a 
k-arc. 

So, in a projective plane, any arc is a cap and conversely. Moreover, each cap is 
an (n, 3)-set; an arc in a d-dimensional projective space is an (n, d + 1 )-set. 

In Section 4.3 we defined ovals in a projective plane; these are examples of arcs 

and caps. Other examples of caps are ovoids in 3-dimensional projective spaces. 
In 5.4.5 and 5.4.7 we shall show that in many cases these examples are the caps 
with the maximum possible number of points. Examples of arcs are the normal 

rational curves which we have already met in Section 2.5. In a projective space of 

order q, these curves have exactly q + 1 points. 

Now we are able to express the existence of MDS codes in a geometric language 

(cf. 5.4.3). 

5.4.4 Corollary. Let nand r be positive integers. Then a linear MDS rn, n - r]­

code with minimum distance 4 exists if and only if in PG(r - I, 2) there exists a 

cap with precisely n points. o 

We may therefore rephrase the problem of constructing good codes with a pre­

scribed large minimum distance as follows: 
Let d and r be positive integers. Determine the largest number n such that 

there is an (n, d - I)-set in PG(r - 1, q). We denote this maximum n by 

maxd_ ICr, q). 
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For instance, by 5.4.4, the number maxr(r,2) is the largest length n of a lin­
ear MDS [n, n - r]-code. 

The determination of the numbers maxrCr, q) is an active (though difficult) 
area of research inside finite geometry. We present some of the fundamental re­

sults. Further results can be found in Hirschfeld [Hir79]. 

Let's start with something easy. What is max2(r, q)? Well, by definition 

max2(r, q) is the largest possible number of points in PG(r - 1, q) such that any 

two of them are independent - but this is the number of all points of PG(r - 1, q). 

Hence it follows that 

max2(r, q) = qr-l + ... + q + 1. 

In particular we have 

max2(r, 2) = 2r - 1 + ... + 2 + 1 = 2r-1. 

The corresponding code is the Hamming [n, n - r J-code. 

While the determination of maxs<r, q) is trivial in the case s = 2, it is not com­
pletely solved for s = 3 (that is d = 4). First we look at two easy cases. 

5.4.5 Theorem. (a) max3(r, 2) = 2r-l. 

{ 
q+l, when q isodd, 

(b) max3(3, q) = 
q + 2, when q is even. 

Proof (a) Let ~ be an (n, 3)-set in P = PG(r - 1,2). Consider a point P E ~. 

The number of lines through P is 

2r - 2 + . . . + 2 + 1 = 2r - I - 1. 

Since on each of these lines there is at most another point of ~ we have 

max3(r, 2) S 2r - I. 

Since the points outside some hyperplane of P form an (n, 3)-set with n = 2r - I 

points, it follows that 

max3(r, 2) = 2r - 1. 

(b) Let P = PG(2, q) be the Desarguesian projective plane of order q, and let ~ 

be an (n, 3)-set in P. 
Since each of the q + 1 lines through a point of m-l contains at most another 

point of ~ it follows that 
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max3(3, q) s q + 1 + 1 = q + 2. 

We show now that max3(3, q) = q + 2 implies that q is even. 

Suppose therefore that max3(3, q) = q + 2, and consider a (q + 2, 3)-set of P. 
Then any line through some point of ~ contains another point of~. This means 
that any line contains either 0 or exactly 2 points of m-l. Consider now a point Q 

~ ~. Since any line through Q has 0 or 2 points in common with ~, I~I must 
be even. Hence also q = Imtl- 2 is even. 

Since any conic is a (q + 1 )-arc, it follows that max3(3, q) ~ q + 1. It remains 

to show that max3(3, q) = q + 2 for q even. This will be proved in the next theo­
rem. 0 

5.4.6 Theorem (Qvist, [Qvi52]). Let a be a (q + I)-arc in a finite projective 

plane of order q. If q is even then there exists a point X (the nucleus of a) 

such that all tangents of a pass through X This means that a can be extended 
to a (q + 2)-arc au{X}. 

In particular, any projective plane PG(2, q) with q even has a (q + 2)-arc. 

Proof Let P be a point of a. Then, by the definition of an arc, any of the q + 1 

lines through P contains at most one further point of a. Since lal = q + 1 there 
are precisely q lines through P that are incident with two points of (1; therefore, 
there is exactly one tangent through P. Thus, a has q + 1 tangents. 

Let P, Q be two points of a and let R be a point of PQ not on a. Then 
through R there is at least one tangent. (Any line connecting R to a point of a 
contains one or two points of a; because lal is odd, there must be a tangent.) 
Since each of the q + 1 points of PQ contains at least one of the q + 1 tangents 
of a, every point of the secant PQ has exactly one tangent. 

Consequently, two tangents of a must meet in a point X that is not a secant. 
In other words, every line joining X to a point of a must be a tangent so that all 
q + 1 tangents pass through X. 0 

One can rephrase the above theorems as follows. Let P be a finite Desarguesian 
projective plane of order q. If q is odd then the arcs with a maximum number of 
points are precisely the ovals (by the theorem of Segre it also follows that these 

are precisely the conics). If q is even, then each oval can be uniquely extended to 
a (q + 2)-arc; these arcs are called hyperovals. 

In 3-dimensional projective spaces the situation becomes more difficult (and more 
interesting) . 
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5.4.7 Theorem. If q > 2, then we have 

max3(4, q) = q2 + 1. 

Proof An ovoid is a set of q2 + 1 points no three of which are collinear. There­
fore we have 

max3(4, q) ~ q2 + I 

The reverse inequality is much more difficult. Let 0R be a set of points no three 

of which are collinear. We suppose that 10R1 ~ q2 + 1 and show that we have 
10R1 = q2 + 1. Furthermore, we may assume that 0R is maximal - there is no set 

0R' of points no three of which are collinear such that 0R is properly contained in 
0R'. 

The first case is simple. 

Step 1. If q is odd then 0R is an ovoid 
Let P and Q be two arbitrary points of 0R. Since, by 5.4.5, any plane through 

P and Q contains at most q + 1 points of 0R we see that 

10R1 ~ 2 + (q + l)·(q + 1 - 2) = q2 + 1. 

It follows that 10R1 = q2 + 1. 
From now on we suppose that q is even. This case is much more intricate. 

Step 2. Through each point of 0R there is at least one tangent line. 
Assume that each line through a point P of 0R contains two points of 0R. 

Then it follows that 10R1 = q2 + q + 2 and no point of 0R would be on a tangent. 
So any plane that contains at least one point of 0R would intersect 0R in exactly 
q + 2 points. We consider a line g that contains no point of 0R. (Through any 

point outside 0R there is at least one such line, since otherwise we have 10R1 = 

2( q2 + q + 1).) If n denotes the number of planes through g intersecting 0R in 
q + 2 points then 

n(q + 2) = 10R1 = q2 + q + 2. 

Thus q + 2 would divide (q + 2)·(q - I) + 4 (= q2 + q + 2), hence also 4. This is 

a contradiction to our hypothesis q > 2. 
Step 3. Let t be a tangent that touches 0R in P. Then any plane through t con­
tains at most q + 1 points of ~. moreover, there is at least one such 'oval plane' 

(a plane having q + 1 points of ~!) through t. 
For, since a plane containing q + 2 points of 0R has no tangent, no plane 

through t has q + 2 points of 0R. If every plane through t were to contain q or 
fewer points of 0R, we would get the following contradiction: 
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10R1 ~ 1 + (q + 1)·(q-l) = q2. 

Step 4. Let x be an oval plane, let ~ be the set of points of 0R in x, and let 

X be the nucleus of ~. Then there is a secant of 0R (this is a line intersecting 
0R in two points) through X. 

Otherwise 0Ru {X} would be a set of points no three of which are collinear, 
contradicting the maximality of 0R. 

Step 5. Let x and X be as in the above step, and denote by s a secant through 
X. Then every plane through s is an oval plane; in particular we have 10R1 = 

q2+ 1. 

For any plane x' through s intersects x in a line through X, hence in a tan­
gent (of ~). Therefore x' contains at most q + I points of 0R. If one of the 

planes through s were to contain fewer than q + 1 points of 0R, then it would 
follow that 

10R1 ~ 2 + q - 2 + (q + 1 - l)·(q + 1 - 2) = q2. 

Putting these results together, the theorem is proved completely. o 

Remark. One can show that 0R is in fact an ovoid if 10R1 = q2 + 1 (see for in­
stance [Beu83], [HaHe76], § 12). 

5.5 Reed-Muller codes 

A class of codes that is most important in theory as well as in practice are the so­

called Reed-Muller codes. These Reed-Muller codes are particularly easy to de­
scribe using affine geometry, as we now see. 

Let A = AG(d,2) be the affine space of dimension d and order 2, whose 

points we shall label arbitrarily PI> P2, ... , P 2d' Using this labelling we can asso­
ciate with any set 0R of points of A its characteristic vector X(0R) as follows: 

{
I, if Pi E 0R, 

x(0R) = (ab' .. , a2d) where aj = h' ° ot erwlse. 

In this way we may identify subsets of the point set of A with binary vectors of 
length 2d. We shall not bother to distinguish between 0R and X(0R); in other 
words, any subset of points of A is a vector of {O, 1 }2d. 

Def"mition. The rtb order Reed-Muller code (of A) is the code C ~ {O, 1}2d 

that is generated by all (d - r)-dimensional subspaces of A. 
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Examples. Consider the case d = 3. We picture as shown in Figure 5.5. 

6.~ __ ~ 

2 
4 5 

o 
Figure 5.5 The affine space AG(3, 2) 

(a) r = 1: The characteristic vectors of the 14 planes are the following: 

11110000 00001111 

11001100 00110011 

11000011 00111100 

10101010 01010101 

10100101 01011010 

10011001 01100110 

10010110 01101001 

Ifwe consider all spans we find the following vectors: 

00000000 11111111 

11110000 00001111 

11001100 00110011 

11000011 00111100 

10101010 01010101 

10100101 01011010 

10011001 01100110 

10010110 01101001 

(b) r = 2: The characteristic vectors of the lines are precisely the subsets having 

two elements. 

Now we describe the Reed-Muller codes in another way. The set of all subsets of 
the point set of A forms a GF(2)-vector space W with the following vector 

addition: 

x + Y := (XuY)\ (Xn V). 
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One calls X + Y the symmetric difference of the sets X and Y (cf. exercise 
13). 

The rth order Reed-Muller code is then simply the subspace of W spanned 
by those vectors that correspond to (d - r)-dimensional subspaces of A. In other 
words, one obtains the elements of the Reed-Muller code if one starts with suit­
able (d - r )-dimensional subspaces and forms certain symmetric differences. 

In the above examples, the respective minimum weights are 4 and 2, and the vec­
tors of minimum weight correspond respectively to the planes and lines of A. In 

other words, the minimum-weight vectors correspond to the generating subspaces 

of the Reed-Muller code. In the following central theorem we shall generalize this 
fact. 

5.5.1 Theorem. Let C be the rth order Reed-Muller code. Then C satisfies 

d(C)= 2d-r. 

A code word of C has weight 2d - r if and only if it is the characteristic vector of 
some (d - r)-dimensional subs pace of A. 

Proof We prove the theorem by induction on d - r. 

First we assume d - r = 1. Here we have to show that no single point can be 
represented as a symmetric difference of lines of A = AG(d, 2). For this, let ~ 

be an arbitrary set oflines of A. We shall use the fact that a point lies in the span 
of ~ (with respect to the symmetric difference) if and only if it is on an odd 
number of lines of ~ (see exercise 17). 

Now we count the lines of ~: For a point P denote by rp the number of 
lines of ~ through P (the degree of P); we see that 

L rp =2·1~1· 
PEA 

Therefore LpEA rp is an even number. Since the sum of the even degrees is also 
even, we conclude that 

is also an even number. Since a sum of odd integers is even if and only if the 

number of summands is even, we see that the number of points with odd degree is 
even. In particular there could never be a unique point of odd degree. 
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Therefore the minimum weight is larger than 1. Since any pair of points form a 
line of AG(d, 2) we have proved the case d - r = 1. 

Suppose now d - r > 1, and assume that the assertion is true for all Reed­
Muller codes with d' - r' < d - r. 

Let 0Jt be an arbitrary set of (d - r)-dimensionaI subspaces of A = AG(d, 2). 
Let X be the set of points that is generated (with respect to the symmetric dif­
ference) by the elements of 0Jt. We have to show that X contains at least 2d - r 

points with equality if and only if these points form a (d - r)-dimensional sub­
space. 

In the following we suppose that IXI S 2d - r ; we have to show that X is the 
point set of a subspace of dimension d - r. 

Step 1. Let V be an s-dimensional subs pace of A. where r + 1 s s s d - 1. Then 
Xn V is a codeword of the rth order Reed-Muller code of U. By induction, this 
means that Xn V is either empty or contains at least 2s - r points, where 
equality holds if and only if Xn V consists of the points of an (s - r)-di­
mensional subs pace of U. 

This can be seen as follows. Let 

0Jt/= 0Jt(V) = {M n V I ME 0Jt, M n V -:F- 0} 

be the set of all nonempty subspaces of V that are the intersection of V with 
some element of 0Jt. First we observe that the symmetric difference of the sub­
spaces in 0Jt/ equals Xn V since the subspaces of 0Jt that are disjoint from V 
do not contribute any points to X n V. 

Moreover, 0Jt/ consists of subspaces of V whose dimension is at least s - r. 
For by the dimension formula 1.3.11, from the projective point of view any sub­
space M E 0Jt intersects the subspace V in a projective subspace of dimension 
at least s - r. If M and V are not parallel, the intersection is not contained in the 
hyperplane at infinity. Therefore M and V intersect each other also in A in an 
(affine) subspace of dimension at least s - r. 

Since any subspace whose dimension exceeds s - r is the disjoint union of 

(parallel) subspaces of dimension s - r, the symmetric difference of subspaces of 
0Jt/ is a codeword ofthe Reed-Muller code of order r of V. 
Step 2. Let P be a point of x. Then, for any i E {O, 1, ... , r} there is an i-di­
mensional subspace Vi through P intersecting X just in P. 

Trivially, the assertion is true for i = O. Suppose that i;?: 1, and assume that the 
assertion is true for i-I. Consider the subspace V = Vi _ \. Assume that any 
i-dimensional subspace through V would intersect X in P and at least one 
further point. Since there are exactly 2d - i + ... + 2 + 1 = 2d - i + \ - 1 subspaces 
of dimension i through V, we would have IXI 2 2d - i + \ > 2d-r. This 
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contradiction shows that there is some i-dimensional subspace Vi through V 
intersecting X just in P. 
Step 3. IXI = 2d-r. 

We consider the subspace V:= Vr By step 1, X induces in any (r + 1)­
dimensional subspace through Vr a Reed-Muller code of order r. So, by induc­
tion, any such subspace contains at least 2r + \ - r = 2 points of X, and hence at 
least one further point of X. Since there are precisely 2d - r - \ + ... + 1 
2d - r - 1 subspaces of dimension r + 1 through V, it follows that 

IXI;?: 1 + 2d - r - 1 = 2d-r. 

We have reached our initial goal. From now on we shall suppose that 
IXI = 2d-r. 

Step 4. The points of X form a (d - r)-dimensional cif.fine subs pace. 

We temporarily adopt some terminology: we call an r-dimensional subspace 
good, if it contains precisely one point of X. 

By induction on s E {r, . .. , d} we shall show the following assertion: if Ws 
is an s-dimensional subs pace that contains at least one good subs pace, then 
Ws n X is an (s - r)-dimensional subs pace. 

The case s = r is trivial, and the case s = r + 1 is easy: it follows from step 3 
that any (r + 1 )-dimensional subspace through a good subspace has exactly two 
points (hence the points of aline) in common with X. 

Suppose now r + 1 s s s d - 1 and assume that the assertion is true for s - 1 
and s. 

Consider an arbitrary (s + 1 )-dimensional subspace W through a good sub­
space G. Denote by W s _ \ an (s - 1 )-dimensional subspace of W through G. 
By induction, X = X n Ws _ 1 is a subspace of dimension s - 1 - r. There are 
exactly three s-dimensionaI subspaces Vo, Vj, V 2 of W through Ws - I ' By 
induction, for any s-dimensional subspace Vi through W s _ I the set X n Viis 
an (s - r)-dimensional subspace Xi (l = 1,2,3). If these three subspaces Xo, Xj, 

X2 are contained in a common subspace Y of dimension s + 1 - r, simple 
counting yields that any point of Y lies in X. Hence we have Xn W = Y. 

Assume that Xo, Xl> and X2 are not contained in a common (s + 1 - r)­

dimensional subspace. Then <Xo, X I) is a subspace of dimension s + 1 - r 

through X. Let X2' be the third (s - r)-dimensional subspace in (Xo, XI) 
through X. This subspace X2' has the property that only two of the (s + I - r)­

dimensional subspaces through it contains points of X n W, namely (X2" Xo, 
Xl) and (X2" X2)· 

Finally we show that there exists an s-dimensional subspace W' of W 
through X2' that intersects X n W only in points of X2" This is easy: In the 
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quotient geometry W /X2' the subspaces (X2" Xo, XI) and (X2" X2) are 
points; there is a hyperplane W' that contains none of the points in question of 
W /X2'. W' is the subspace we seek. By step I, W' (\ JC consists of the points of 
an (s - r)-dimensional subspace. Since, by construction, W' (\ JC = X2' (\ JC = X 
with X being a subspace of dimension s - r - I we get a contradiction. 

The Reed-Muller codes belong to the most studied (and most recommended to be 
studied) structures of coding theory. We recommend particularly the books 
[CaLi91], [AsKe92]. 

Historical remark. The Reed-Muller codes have played an important role in the 
application of coding theory; indeed, they have been used to encode pictures sent 
from satellites back to Earth. 

The aim ofthe Mariner 9 mission in 1971 was to flyover Mars and photograph 
its entire surface. The pictures had to be transmitted to Earth and, obviously, dur­
ing this transmission a lot of errors occurred. The data, therefore, had to be en­
coded by a very good code; otherwise all the details which had been detected with 
the extremely good optical equipment would have remained invisible to us. 

The pictures had a high resolution of700x832 pixels. Each pixel became an 8-
tuple that represented a grey value. 

These binary data were divided into blocks of 6 bits each; each block was en­
coded by a codeword of weight 32; thus one paid the price of 26 redundant bits in 
order to correct errors. For this, a first order Reed-Muller code of length 64 
(generated by all hyperplanes of AG(6, 2» was used, which is a 7-error correcting 
code. (Cf. [Hill86], pp. 9-10.) 

For decoding, the so-called 'Green Machine' described in [MWSI83], Section 
14.4, was used. 

Exercises 

1 Let C be a subset of V that satisfies either property (a) or property (b) of 

5.1.2. 

Show that C is a (-error correcting code. 

2 Show that the code described in 5.1.3 is a I-error correcting code. 
To which codeword will the vector 1100011 be decoded? 

3 Show that for any quadrangle in the projective plane of order 2 there is ex­
actly one line containing no point of the quadrangle. 

Exercises 

4 Let P be a projective plane of order 2. Show that 
(a) any triangle can be uniquely extended to a quadrangle, 
(b) any set of five points of P is the union of two lines. 
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5 Interpret the Hamming code Ham( 4) in terms of the projective space 
P = PG(3, 2). 

6 Show that the matrix H whose columns consist of all the nonzero binary 
r-tuples has rank r. 

7 Generalize 5.3.2 to t-error correcting codes. 

S We call a subset C of {O,l}n a I-error detecting code, if the following 
condition is satisfied: 

If e is a vector of weight at most t, then for all c E C the vector c + e is 
not a codeword. 

Convince yourself that C is a I-error detecting code if and only if 
d(C) ~ t+ l. 

9 Let C be the subset of {O, I}n defined as follows: 

C := {(al> ... , an) I al + ... + an is even}. 

Show that C is a linear I-error detecting code. 

10 Ca) Prove that by elementary row operations one can transform any generator 
matrix of a linear [n, k]-code into a matrix of the following form: 

(Ek I A). 

(b) Show that if G = (Ek I A) is a generator matrix of a linear code C then 

H = (AT I En - k) 

is a parity check matrix of C. 

H A k-arc in a projective plane P is called complete if it is not contained in a 
(k+ I)-arc. 

(a) Prove that an arc a of P is complete if and only if through each point of 
P there is at least one line having two points of (i 
(b) Suppose that P is a finite projective plane of order q. Show that a com-

plete arc has more than .J2q points. 

12 The ISBN error detecting code of book numbers is defined as follows. Any 
ISBN (International Standard Book Number) consists of nine digits for data 
(the first group indicates the language area, the second the publishing house, 
and the third is the number of the book inside the publishing house) and one 
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check symboL If the first nine digits are denoted by ZIO,"" Z2 then the 
check symbol ZI is computed in such a way that the number 

10xZIO + 9 xZ9 + ... + 2xZ2 + ZI 

is divisible by 11. If ZI = 10 then one wTites ZI = X (Roman symbol for 
10). 

Questions: The ISBN code is defmed over a certain alphabet. What is it? 
Which errors can be detected using the ISBN code? 
For more information on check-digit systems the reader might consult 
[GaI91] and [GaI94]. 

13 Show that the set of all sets of points of an affine space A forms a vector 
space over GF(2), if one defines the sum of two vectors as the symmetric dif­
ference of the corresponding sets of points. 

14 Let e be a cone with vertex V in P = PG(3, q) where q is even. Then for 
any plane 1t of P that does not pass through V, the set en 1t is an oval. 
Show: if N is the nucleus of such an oval, then each line through N is a 
tangent of e. 
We call any such point N a nucleus of the cone e. 

15 Let e be a cone with vertex V in P = PG(3, q) where q is even. Then the 
lines of e form an oval in the quotient geometry P IV. Let N be the nucleus 
of this oval of P IV. (Then N is in P a line through V.) Show that any 
point except V on N is a nucleus of the cone e. 

16 Let e be a cone with vertex V in P = PG(3, q) where q is even. Show that 
all nuclei of e lie on a common line of P through V. 

17 Show that in a Reed-Muller code generated by the lines of AG(r, 2) (i.e. in a 
Reed-Muller code of order r - 1) the following is true: a point is contained in 
a codeword if and only if it is on an odd number of lines generating that 
codeword. 

18 Let ~K be a set of points in P = PG(d, q) with the property that any r­

dimensional subspace of P contains at least one point of ~. 
Show that I~I 2: qd - r + ... + q + 1 with equality if and only if ~ is the set 
of points of a (d - r )-dimensional subspace of P. 
[Hint: Suppose that I~I:-:; qd-r + ... + q + 1 and then show that 
- there is an (r - 1 )-dimensional subspace disjoint from ~, 
- any r-dimensional subspace that contains an (r - 1 )-dimensional subspace 
disjoint from ~ intersects ~ in exactly one point, 

True orfalse? 211 

- I~I = qd-r + ... + q + 1, 

- any (r + 1 )-dimensional subspace that contains an (r - 1 )-dimensional 
subspace disjoint from ~ intersects ~ precisely in the points of a line, 
- .... ] 

Remark. The case r = 1 is a theorem of Tallini [TaIl57]; the general case was 
proved by Bose and Burton [BoBu66]. For a proof see also [Beu83], Section 
7.3. 

True or false? 

n A code is linear if it contains the zero-vector. 

o A code is linear if it has exactly 2k (k EN) elements. 

o A code C is linear, if w(C) = d(C). 

o Any t-error correcting code has minimum weight 2t + 1. 

o Each codeword of a I-error correcting code has weight 2t + 1. 

o Each codeword of a perfect t-error correcting code has weight 21 + 1. 

Let C be a (-error correcting code. 

D (a) Then, by adding a new position, one can obtain a code C* with mini­
mum weight 2(t + 1). 

o (b) If C is linear then C* is also linear. 

Projects 

Project 1 

One can define codes not only over the field with two elements, but over any 
finite field GF(q) with q elements. The distance of two n-tuples with coeffi­
cients in GF(q) is defined as the number of positions in which the two vectors 
differ. 

Try to generalize all definitions, theorems and examples of Sections 5.1, 5.2, 
5.3 to the general situation. 

Project 2 

Try to compute the dimension of the Reed-Muller codes. If C is a Reed­
Muller code in AG(d, 2) of order 1, then its dimension is dim(C) = d + 1. For a 
Reed-Muller code C in AG(d, 2) of order m one has the following formula: 
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Prove this formula. 
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d 

dim(C) = L 
i=O 

[Hint: First try to solve the case d = 3, m = 1 and then the case m = 1 in gen-

eral.] 

You should kuow the following notions 

Message, Hamming distance, I-error correcting code, minimum distance, linear 
code, generator matrix, weight, minimum weight, dual code, parity check matrix, 
syndrome, Hamming code, perfect code, extended Hamming code, MDS code, 

(n, s)-set, arc, cap, Reed-Muller code. 

6 Applications of geometry in 
cryptography 

Cryptography has two aims. On the one hand it provides methods that guarantee 
the confidentiality of information (enciphering). On the other hand it provides 
methods that make it possible to detect alterations of data and to verify whether 
the data really came from the claimed sender (authentication). Usually, such sys­
tems are based on secret keys; therefore the secure distribution and storing of se­
cret keys is a central area of cryptography. In this chapter we shall show how 
geometric structures can be used for enciphering, authenticating, and for storing 
secret data. 

Geometric cryptosystems often have essential advantages. Most importantly, 
the security of cryptosystems obtained from geometry is provable; their security 
does not rely on unproved assumptions or on unintelligible complexity - unlike 
most of the used algorithms today. The second advantage, no less important, is 
that one can obtain cryptosystems with arbitrarily high levels of security. Finally, 
these systems are surprisingly simple to realize. The methods presented in Sec­
tions 6.3 and 6.4 have these marvellous properties. 

6.1 Basic notions of cryptography 

We consider a communication model similar to that of coding theory. A sender 
wants to securely transmit data to a recipient; in such a way sender and recipient 
protect themselves against attacks of a third party. We distinguish two types of 
attacks, namely passive and active. 

Performing a passive attack, an attacker tries (only) to read the transmitted 
message. In order to transmit data confidentially, sender and recipient must apply 
countermeasures to render the message unintelligible to an attacker. There are 
various useful countermeasures. They could be organizational or physical and 
consist, for instance, of requiring a stringent security check for all employees, or 
of transmitting the messages only in sealed envelopes. Here, we study methods of 
'enciphering', which are based on mathematical structures. 



214 6 Applications of geometry in cryptography 

key k key k 

! ! 
data d 

11 f 
ciphertext c 

11 f 
data d 
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Figure 6.1 The mechanism 'encipherment' 

The principle of enciphering is simple (see Figure 6.1). Using an algorithm f the 
data (piaintext or cleartext) d is enciphered under a secret key k. More pre­
cisely: for each key k there is an invertible function fk mapping a cleartext d 
onto a ciphertext c = fk(d). The sender computes the ciphertext (message) c = 

fk(d) and transmits it via a possibly insecure channel to the recipient. Using the 
inverse function fk -1 the recipient can decipher the ciphertext: 

An algorithm f for enciphennent must have the following properties: 
- The recipient can easily reconstruct the original data from the received mes­
sage. 
- Without knowledge of the key k it is very difficult to reconstruct the cleartext 
corresponding to an enciphered message. 

Using an active attack the attacker tries to modify the transmitted data; he may 
change a transmitted message, delete it, or even insert a new message. A particu­
larly dangerous aim of the attacker is to change the sender's address. The corre­
sponding cryptographic countenneasure is authentication. Although such a 
mechanism does not prevent an attacker from modifying or inserting his own data, 
it gives the recipient a means to decide whether the received message is genuine 

and comes from the given sender. 
The principle of an authentication mechanism is as follows (cf. Figure 6.2). 

The sender authenticates the data d by applying a cryptographic algorithm f 
under a secret key k. Thus he gets the authenticated message c = fk( d), which 
he transmits to the recipient. The recipient verifies the received message c by 
checking whether c is a message valid under k. More precisely, he checks 
whether there is some cleartext that is mapped under k onto c. 
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authentication verification 

Figure 6.2 The mechanism 'authentication' 

An algorithm f for authentication must have the following properties: 

- The recipient can easily verify whether the received message is valid under k. 
- The recipient can easily reconstruct the original data from the received mes-
sage. 

- Without knowledge of the key k it is very difficult for an attacker to generate 
a message valid under k - only a small percentage of all messages would be valid 
under k. 

Remark Many authentication systems have the property that the authenticated 
message consists of the original data with an authentication code attached. By 
looking at this special case two properties become clear: 

- The transmitted message is longer than the original data; for authentication one 
adds redundancy. 

- In this case the recipient verifies the message by checking with the key k 
whether the received authentication code matches with the received data. (See 
Section 6.3.) 

To get an idea of the security of a cryptographic system, one has to consider the 
possible attacks under which the algorithm remains secure. All security consid­
erations are based on the principle of Kerckhoffs, which says that one has to face 
the possibility that the attacker knows the algorithm. The only thing the attacker 
must not know is the key. Only sender and recipient should know the key; for this 
reason the key is also called a secret key. 

There are, in principle, three means of attack. A good algorithm must certainly 
be able to resist the first two; the third is only possible in extreme situations. 
- The attacker knows a (often large) number of messages (known ciphertext 
attack). 

- The attacker also knows a (usually small) set of data with the corresponding 
messages (known plain text attack). 
- The attacker can choose data and gets the corresponding ciphertext (chosen 
plaintext attack). 
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Remark. In this book we only consider symmetric cryptosystems. These require 
sender and recipient to have the same secret key. Thus, they must have agreed 
upon a common secret. There are also other cryptosystems, the so-called asym­
metric algorithms (public key algorithms). With asymmetric algorithms for enci­
phering, only the recipient possesses the secret (private) key needed for decipher­
ing. The enciphering function uses a public key to which everybody has access. 
An introduction to public key cryptography and an overview of asymmetric algo­

rithms can be found in [Beu92], [DaPr89] and [SaI90]. 

6.2 Enciphering 

In this section we present an important method for enciphering, namely stream 
ciphers. The simple idea was proposed by the American engineer G. S. Vemam 
(1890-1960) ([Ver26]). In order to encipher the data d they must be encoded as a 

binary string (i.e., a sequence of Os and Is): 

d, E {O, I}. 

As key we use a random sequence k = kj. k2' k3' ... of Os and Is. The sender 
gets the ciphertext c = cl> c2, c3, .. , by adding each bit d i to the corresponding 

bit ofthe key k j modulo 2 (see Figure 6.3): 

(i= 1,2, ... ). 

Figure 6.3 Enciphering using the one-time pad 

The recipient can decipher as easily as the sender enciphers, because enciphering 
and deciphering are just the same. The recipient adds to each bit of the received 
sequence c = Cl' c2, c3, ... the corresponding bit of the key and gets the original 

data back, since 

(i=1,2, ... ), 

see Figure 6.4. 
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Figure 6.4 Deciphering using the one-time pad 

This enciphering algorithm is called the one-time pad. The one-time pad has a 
useful property. Suppose that the sequence of key bits is truly random, if one 

knows arbitrarily many bits kl>"" kn then the next bit kn + 1 can only be 
guessed with a probability of i. In this case the sequence cl> Cb c3, . .. of the 
ciphertext also has this property. 

As a consequence an attacker has a big problem. It is no use to apply compli­
cated methods. There is no method that is better than to guess! Systems which 
have this remarkably property are therefore called perfect. 

Despite this marvellous property, the one-time pad has a big disadvantage. The 
key must be transmitted to the recipient. Because the bits of the keys are inde­
pendent, no bit can be calculated from the others, and so one has to transmit all 
bits of the key. In other words, to encipher a cleartext consisting of n bits, one 
has to transmit in advance - and secretly - a secret key also containing n bits. So 
one has reduced the problem of secretly transmitting n bits to secretly transmit­
ting n other bits. 

Although it seems as if we are back where we started, there are circumstances 
where this method can be used advantageously: sender and recipient can agree 
upon the key in advance at a predefined time, whereas there is often no choice of 
when the enciphered message can be sent. 

But the price one has to pay for perfect secrecy is high. 
Must it be so high? Is it true that in a perfect system the length of the key is 

necessarily equal to the length of the cleartext? (Or, equivalently, the number of 
keys is necessarily equal to the number of possible cleartexts?) Unfortunately, the 
answer to this question is 'yes'. This is the content of the famous theorem of C. 
Shannon (1916). 

6.2.1 Theorem (Shannon, [Sha49]). In any perfect enciphering system the number 
of keys is at least as large as the number of the possible cleartexts. 

Proof Firstly, we convince ourselves that for each possible cleartext d and for 
each possible ciphertext c there must be at least one key mapping d onto c. 
Assume that there are a d and a c that cannot be mapped onto each other by any 
key. In this case, an attacker by observing c can learn something: he knows that 
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the corresponding cleartext is not d. This contradicts the definition of being per­
fect. 

Now we fix a ciphertext Cf. Because each possible cleartext can be mapped by 
at least one key onto c f

, the number of keys must be at least as large as the num­
ber of cleartexts. Observe that the enciphering function for a given key is injec­
tive. 0 

Remark. A more formal version of the theorem and the proof can be found in 
[Mas86]. 

In practice, the enciphering method described above is often applied using se­
quences containing pseudo-random sequences of key bits rather than using truly 
random bits. These are binary sequences that look, at first glance, like random 
sequences, but in reality they are deterministic sequences depending on only a few 
parameters. These parameters provide the key, and only these values are trans­
mitted. Of course, such systems are no longer perfectly secure. 

How does one define pseudo-random? In the literature various criteria for se­
quences to be pseudo-random are discussed. Among these are the postulates of 
Golomb (see for instance [BePi82]). They apply to periodic sequences, i.e. se­
quences that are repeated for ever. The smallest positive integer n such that the 
sequences repeats after the nth position is called the period of the sequence. Any 
periodic sequence is generated by a cycle C, which is repeated. 

Example. The sequence 

0101101011 01011 ... 

is a sequence of period 5, which has (01011) as generating cycle. Another gener­
ating cycle is (10 11 0). 

In order to formulate the postulates of Golomb, we consider a periodic sequence 
with generating cycle C. The first postulate is easy to state: 

(Gl) The numbers of Os and Is in C differ by at most 1. 

Ideally, one would like the number of Os to equal the number of Is, but for odd n 

this is not possible. 
To formulate the next postulate, we need the notions 'string' and 'gap'. A 

string is a sequence of 1 s preceded and followed by Os; a gap is a sequence of Os 
preceded and followed by Is. For example, the sequence 

C = 011101100101000 
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has one gap oflength 2 and two strings oflength l. 
Now we can formulate the second postulate. 

(G2) For each nonnegative integer i. the number of strings of length and the 
number of gaps of length i differ by at most 1. 

If C is a generating cycle of a periodic sequence, then the cycle C(a) that is de­

rived from C by a cyclic (left) shift of a positions is a generating cycle as well. 
If C denotes the above cycle, then 

C(2) = 110110010100001. 

For a fixed a"# 0 we denote by A the number of positions in which C coincides 
with C(a) and by D the number of positions in which C and C(a) are differ­
ent. Obviously, we have A + D = n. We say that the number 

A-D 2A-n 

n n 

is the out-of-phase autocorrelation. In the above example we get with a = 2 the 
values A = 7 and D = 8; therefore its out-of-phase autocorrelation is 

A-D 

n 15 

Since, in general, the numbers A and D depend on a, the out-of-phase autocor­
relation will depend on a as well. Golomb's third postulate reads as follows. 

(G3) For all a E {I, 2, ... , n-l} the out-oJ-phase autocorrelations are equal. 

The question arises if there are sequences fulfilling these postulates. Surprisingly 
enough, most of the known sequences having this property are constructed using 
projective spaces! For this construction we need an important tool in finite ge­
ometry, the so-called Singer cycle. 

6.2.2 Theorem. Let P = PG(d,2) be a finite Desarguesian projective space of 
dimension d and order 2. Then P has a collineation group :E, called the Singer 
cycle. with the following properties: 

- :E is a cyclic group, which means that it is generated by a single element. 
- :E is sharply transitive on the set of points (and on the set ofhyperplanes) of P. 

Proof We need some algebra. By the first representation theorem (3.4.2) we can 
represent P as P(V), where V is a (d + 1 )-dimensional vector space over K = 

GF(2). Because the field F = GF(2d + I) is a Cd + 1 )-dimensional vector space 



220 6 Applications of geometry in cryptography 

over K, w.l.o.g. we can choose V = F = GF(2d + I). Since the field K has only 

one element different from zero, the points of P are exactly the vectors different 
from zero, hence the elements of F* = F \ {O}. 

From algebra (see e.g. [Her64]) we know that F can be constructed as follows. 

We take an irreducible polynomial f of degree d + lover K. Then the elements 
of F are the polynomials in one variable x of degree at most d (including the 

zero-polynomial). Addition in F is the addition of polynomials. In order to cal­

culate the product of two elements of F, one calculates the product of the corre­

sponding polynomials g and h and then reduces the result 'modulo f. This 

means that the product is the remainder of g·h when divided by f. Therefore, the 

product is also a polynomial of degree at most d. 
As an example we construct GF(8). The polynomial f = x3 + x + I is irre­

ducible over GF(2) (which is easily verified in this simple example). The ele­

ments of GF(8) are the polynomials 0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1. 

In order to compute the product of the elements x2 + 1 and x, we first multiply 

in K[x]: 

(x2 + 1)·x=x3 +x=x3 +x+ 1 + I =f+ 1. 

If we reduce modulo f we get the constant polynomial I. (Another way of ex­

pressing this fact is (x2 + I)·x == 1 mod f.) 
In exercise 3 the reader is invited to construct GF(8) by this method. 

The crucial point is the fact that one can choose the polynomial f in such a 

manner that the powers 

x, x2, x3, ... , x2d + 1-1 

of x are precisely the nonzero elements of F. Polynomials with this property are 

called primitive. (See, for instance, [Her64]. The fact that the multiplicative group 

of the field GF(2d + 1) is cyclic corresponds to the existence of primitive poly­

nomials of degree d + lover GF(2).) 

Now we return to the proof of the theorem. We are now able to define a generat­
ing element of the Singer cycle. For this, we consider the map cr from F onto 

itself that is defined by multiplication by x: 

cr(g) := x·g (g E F). 

We have cr(O) = 0; moreover cr is a permutation of F\{O}. Therefore, if f is 

primitive, cr generates a cyclic group 2: = {id, cr, cr2, . . .} of order IFI - 1 = 
2d + 1-1. 
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We claim that 2: is the group we are looking for. By construction, cr is a bi­
jective map from the set of points of P onto itself. It remains to show that cr 

maps triples of collinear points onto triples of collinear points. To show this, let 
u, v, w be distinct elements of F* such that the corresponding points of P are 
collinear. This means that the vectors u, v, w are linearly dependent; hence we 

have u + v = w. (Observe that 1 is the only element of F different from 0). Then 
we have 

cr(u) + cr(v) = x·u + X·V = x·(u + v) = x·w = cr(w). 

Therefore it follows that cr is in fact a collineation of P. By construction, the 
powers of cr successively map the points of P onto each other. 

So the theorem is proved. 0 

Remark. Theorem 6.2.2 also holds for finite projective space of arbitrary order q; 

see exercise 1. 

Now we consider the projective space P = PG(d, 2) of dimension d and order 2. 
We shall continue to use the notation fixed in the proof of Theorem 6.2.2. The 
points of P are the elements of F* = GF(2d + 1)*. This field is obtained from K 

= GF(2) by adjoining a root of a primitive polynomial f of degree d. The points 
of P can be identified by the polynomials in x of degree at most d + 1. As gen­

erating element of the Singer cycle we choose the multiplication by x mod f. 
We shall label the points of P by the integers 1,2, .... , v = 2d+ 1 -1, in such 

a way that the map i H i + I mod v is our generating element. 

The following theorem shows how to construct, using PG(d,2), a binary 
pseudo-random sequence that fulfils Golomb's postulates. 

6.2.3 Theorem. Let C = (al> a2, ... , av) be the incidence vector of a hyperplane 
H of P = PG(d,2) with respect to the above labelling of the points of P. 
(Therefore, ai = I if the point i lies in H, and ai = 0 otherwise.) Then the cycle 

C fulfils Golomb 's postulates. 

Proof First, we show (Gl). By definition, the number y of Is in C equals the 

number of points in the hyperplane H; therefore, 

y = 1 + 2 + 4 + ... + 2d - 1 = 2d - 1. 

Because the number z of Os in C equals the number of points not in H we get 

z = v - y = 2d + 1 - 1 - (2d - 1) = 2d. 

Because z - y = I, postulate (G 1) holds. 
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In order to show (G2) we use the fact that the labelling of the points corre­
sponds to the Singer cycle. 

As our hyperplane we choose the hyperplane H spanned by the points 1, x, 
x2, ... , xd - 1. In other words, H consists exactly of the polynomials of degree at 
most d- 1. 

In the field F each nonzero element, in particular the element x, has an in­
verse with respect to multiplication. 
Claim 1: The polynomial inverse to x in F is f: I. 

Since f is irreducible its constant term equals 1. Therefore, x is a factor of 
f - 1 = f + 1; this means that f: I is a polynomial in K[ x] of degree smaller than 

d. Moreover, 

f+l 
-- . x = f + 1 == 1 mod f, 

x 

h· h h f + I. h . f· F w lC means t at -x- IS t e mverse 0 x m . 
Claim 2: The incidence vector e of H has one string of length d and 2i 
strings of length d - 1 - i (i = 0, 1, ... , d - 2). 

Since xd and Al = f: I are polynomials of degree d, the points xd and x-I 

are not in H. Therefore there exists a string oflength d, namely the sequence (1, 
x, x2, ... , xd - I ). 

There are exactly 2i polynomials h = xi + I + aixi + ... + aIx + 1 of degree 
i + 1 with constant term different from o. It follows that the points 

h, x·h, x2 ·h, ... , xd - 2 -i·h 

are contained in H. In order to show that this is a string of length d - 1 - i, we 
have to show that this sequence of Is cannot be extended, that is that the points 
Al.h and xd-I-i.h are not in H. For this it is enough to show that the poly­
nomials Al. h and xd - I - i. h have degree d. Because h has degree i + 1, it 
follows immediately that xd - I - i. h has degree d. Moreover using 

f-l 
Al.h= --·h 

x 

with h=xi+l+aixi+ ... +alx+l weseethat 

f-l f-l . . 
h· -- = -- + (Xl + aixl-I + ... + al)(f-l) 

x x 
f -1 . . I 

== -- - (Xl + aixl- + ... + al) mod f. 
x 

Because f ~ I is a polynomial of degree d, and i < d, it follows that h. f ~ I has 

degree d. 
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So we have at least 2i strings of length d - 1 - i. Because we looked at all 
polynomials of degree ::::; d - 1 exactly once, we have counted each possible string 
exactly once. Thus the claim about strings is proved. 
Claim 3: The incidence vector e of H has a gap of length d + 1 and 2i gaps 
of length d - 1 - i (i = 0, 1, ... , d - 2). 

The number of gaps of a fixed length can be calculated in a similar way to the 
number of strings, by observing that xd + h ~ H, if h = 0 or h E H (see exercise 

2). 
In order to show (G3) we use the fact that a is a collineation of P. This im­

plies that not only e is the incidence vector of a hyperplane, but also C(a). More 
precisely, C(a) is the incidence vector of the hyperplane H' = aG(H). 

From this the claim follows easily: The number A of positions in which e 
and C(a) coincide equals the number of common Is plus the number of common 
Os. In other words: this is the number of points that lie on both H and H' plus 
the number of points that are on neither H nor H'. Therefore 

A = 2d - I - 1 + 2d - 2d - I = 2d - 1. 

From this we get also 

Therefore the out-of-phase autocorrelation is constant (more precisely, equal to 
-I /(2d + I - I», and (G3) has also been shown. 0 

Remarks. 1. There is only one sequence known that fulfils Golomb's postulates, 
yet cannot be derived from a projective space in the above described way. In 
[PiWa84] the reader can find more information on this topic. 
2. A possibly disappointing remark. The pseudo-random sequences generated 
using the Singer cycles fulfil the postulates of Golomb, as we have seen - but they 
are not suitable for serious enciphering. The reason for this is that a very small 
part of such a sequence determines the whole sequence. (With the aid of the poly­
nomials one can show that these sequences can also be derived from linear shift 
registers, and such sequences are known to be cryptographically weak. ef 
[BePi82].) 
3. Nevertheless such sequences are very useful in cryptography for at least two 
reasons. Firstly, they provide the elementary building blocks for more complicated 
and more secure (one hopes) algorithms. Secondly, they are used to 'measure' the 
cryptographic strength of a pseudo-random generator. The question is: how long 
must a linear shift register be in order to produce the output sequence of a 
given pseudo-random generator? If this register is short, then certainly the 
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pseudo-random generator is cryptographically weak; if long, the generator is (one 
hopes) good. For more information see [Rue86]. 

6.3 Authentication 

In many of today's cryptography applications the principal aim is not so much the 
confidentiality of the plaintexts, but rather their authenticity. We call a message 
authentic if the recipient is sure that 
- he receives exactly the data the sender has sent (data integrity) and 
- the data really originate from the claimed sender (data authenticity in the 
strong sense). 

Therefore one distinguishes two different types of attacks. 
I. Impersonation: An attacker tries to insert a message claiming that it comes 
from the real sender. 
2. Substitution: An attacker tries to modifY a message actually sent. 

An authentication protocol should provide protection against both attacks. 
As protection against the attacks described authentication systems have been 

invented (cf. [Sim82]): sender and recipient share a common secret key k. Using 
an authentication algorithm f the sender transforms the plaintext d into the mes­
sage c = fk( d) to be transmitted. This means for each key k that the mapping fk 
maps the set ill of all plaintexts onto the set of all messages (see Figure 6.5). 

Figure 6.5 An authentication system 

When the recipient receives a (possibly altered) message c' and wants to verifY 
whether this message is authentic, he checks whether c' is a possible message 
under the key k. In other words: he checks whether c' is an element of fk(ill) = 

{fk(dO) I do E ill}. If the answer is yes, then there is a plaintext d' with fk(d') = c'. 
So the recipient accepts the message c' as authentic and assumes that d' was the 
original plaintext. Otherwise, he rejects c'. 

Why is the attacker not able to calculate a message c' that would be accepted? 
Simple answer: because he does not know the key! 
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The verification method implies that an authentication system does not offer 
any security if the set mt of messages and the set ill of plaintexts have the same 
size. So a secure authentication system must contain more messages than plain­
texts. Therefore, more information must be transmitted than without authentica­
tion. 

A word on terminology. What we call 'plaintexts' are often called 'source 
states' or 'data' (hence the letter d); this is the information the transmitter wants 
to send. The data actually sent is called the 'message'. 

We describe the method above again for the special case of 'authentication 
codes'. In this case, the message is obtained by attaching an authentication code 
(also called message authentication code or MAC, for short) ak(d) to the 
plaintext d. In this case the message is the pair (d, ak(d», the recipient receives a 
pair (d\ a'). In order to verifY whether (d', a') is authentic, he must verifY 
whether (d', a') is a valid message under the key k. For this he simply calculates 
ak(d') and compares the result with a'. If these values coincide, he accepts the 
message, otherwise he rejects it. 

This authentication protocol is the procedure to authenticate plaintexts since it 
can be implemented very efficiently. It is used a million times all over the world. 

Definition. An authentication system is called Cartesian if, for all messages c, 
there is exactly one plaintext that is mapped onto c by a key. 

In a Cartesian authentication system the plaintext can be deduced from the mes­
sage without knowledge of the key. Thus, these authentication systems offer no 
secrecy at all. The system described above using authentication codes is Cartesian, 

because the transmitted message (d, ak( c » contains the plaintext d unbidden. 

In the following we investigate the security of authentication systems. For this, we 
only consider Cartesian authentication systems. Most of the results can be gener­
alized, see for instance ISim82], [Sim92a]. 

The first impression might be that the security of an authentication system es­
sentially depends on the algorithm f. This holds for most systems used in prac­
tice. But if we study how secure an authentication system can possibly be, the 
explicit structure of f plays no role at all, as we will see. Rather, another pa­
rameter enters the stage, namely the number K of all possible keys. Very often, 
the set of keys consists of all binary n-tuples for some n; then K equals 2n. 

For the following investigations we always assume that each key is chosen 
with the same probability. 
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From this assumption we see immediately that each attacker can modify plain­
texts without being detected with a probability of at least l/K: he just chooses 
one of the K keys at random and calculates the message c* belonging to his 
plaintext d* by using his key. 

But in reality, authentication systems offer a remarkably lower security; this 
fact is expressed by the famous theorem of Gilbert, Mac Williams and Sloane 
([GMS74]). 

In this theorem we consider the situation of an attacker being free to insert his 
messages at one of two occasions: 
I. he can try to insert his message before any message has been sent 
(impersonation); or 
2. he observes exactly one message and then tries to modify it (substitution). 

6.3.1 Theorem (Gilbert, MacWilliams, Sloane). Let K be the number of all pos­
sible keys of an authentication system. Then an attacker can deceive with prob­

ability at least 1 /J;Z . 

Proof We suppose that there is an authentication system having K keys and the 
chances for an attacker are at most 1 /J;Z. We have to show that his chance of 
success is exactly 1 /J;Z . 

As described above, an attacker basically has two choices for his attack. Either 
he tries to insert a message before any message has been sent, or he observes one 
message and tries to replace this message by his own, using the information he 
gains from the original message. By assumption, in each case the probability for 
being successful is at most 1/J;Z. 

First, we consider the impersonation attack. For a message c, let Kc be the 
number of keys under which the message c is valid. Thus, the probability that 
this message will be accepted is Kc/K. By assumption, for each message c it 
holds that 

(1) 

thus Kc::;; J;Z . 
Now we analyse the substitution attack. Let c be the message observed by the 

attacker. We suppose that c was sent with probability p(c). The attacker tries to 
deduce as much information as possible from c. Because the authentication system 
is Cartesian, he knows the corresponding plaintext d and can, at least theoreti­
cally, determine the set JC( c) of keys mapping d onto c. He knows that the ac­
tual key used by the sender must be contained in JC( c). 
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Because the keys are equally distributed and independent of the plaintexts, each 
key of JC(c) could be the actual key with the same probability. Therefore, the 
attacker chooses an arbitrary key from JC( c) and authenticates his plaintext; he 
obtains a message c'. 

The probability that c' will be accepted is the number Kc,c' of keys under 
which c and c' are valid divided by the number Kc of keys in JC(c). By the 
choice of c' we have that Kc,c' ~ 1. So, in this case, considering (l), the probabil­
ity of a successful attack is at least 

Kc c' I 1 
-'->->­
Kc - Kc - J;Z' 

For his overall probability of success p we therefore get 

1" K c.c'" 1 1 I ~p ~ L..Jp(c) ·max{c'ft} -' ~ L..Jp(c)· r = r' 
'\IK c Kc C '\IK '\IK 

Thus we have equality and therefore p = 1 /J;Z . From this it follows that Kc c' ::;; 1 
for all c, c' and Kc = J;Z for all c. In particular J;Z is a positive integer. ' 0 

Definition. An authentication system with K keys is called perfect, if the prob­
ability that an attacker will be able to insert a message of his own device or to 
substitute an authentic message is only 1/J;Z . 

Our target is to precisely describe all perfect authentication systems. Statements 
on their structure are collected in the following corollary drawn from Gilbert, 
Mac Williams and Sloane. 

6.3.2 Lemma. In a perfect authentication system with K keys the following 
statements are true: 
(a) Each message is valid under exactly J;Z keys. 

(b) For each plaintext there are exactly J;Z different messages. 
(c) Two messages belonging to different plaintexts are valid under exactly one 

common key. 

Proof Let c be a message. It follows from the proof of 6.3.1 that the number kc 
of keys under which c is a valid message satisfies Kc = J;Z. This shows (a). 

Two different messages belonging to the same plaintext d carmot be valid un­
der a common key, since this implies that the map fk maps d onto two different 
messages. Considering (a), it thus follows that there are K/J;Z = J;Z messages 

onto which d can be mapped. 
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Let c, c' be messages belonging to different plaintexts, and let d' E ill corre­
spond to c'. The FK keys under which c is valid map d' onto different mes­
sages, because by 6.3.1 two messages are valid under at most one common key. 
Since there are exactly FK different messages corresponding to d', these are all 
messages for d'. In particular, the number Kc, c' of keys under which c and c' 
are valid equals 1. 0 

The theorem of Gilbert, Mac Williams and Sloane says that perfect authentication 
systems are the best possible systems for sender and recipient. From the point of 
view of an attacker, this is the worst situation he might face. 

Now, at last we ask whether perfect authentication systems exist at all. The an­

swer is 'yes', and, what is more: all perfect authentication systems can be con­

structed using geometric structures. We begin with the most important example. 

6.3.3 Theorem. Let P be a finite projective plane. We choose a line go of P, 
and define an authentication system A as follows: 

the plaintexts of A are the points on go, 
- the keys of A are the points outside go, 

the message belonging to d under a key k is the line through k and d: 

Then A is a perfect authentication system, 

Proof Let q be the order of P. 

First, we consider the impersonation attack: The attacker does not know any 

valid message and wants to authenticate some d E ill. There are q messages cor­

responding to d, namely the lines through d distinct from go. On each of these 
lines there are exactly q of the q2 keys. Thus, the probability that the attacker 
chooses a valid message corresponding to d is q / q2 = 1 / q . 

We now study the substitution attack: The attacker intercepts a message c that 

is a line c *- go through a point d on go (see Figure 6.6). 

Figure 6.6 A geometric authentication system 

6.3 Authentication 229 

For each possible d' E ill, d' *- d, chosen by the attacker he must find the valid 
message through d', in other words the line through d' and the key unknown to 
him. 

Which information about the actual key does the attacker have? He knows the 
authentication system and thus that the key is a point outside ~. Because c is a 
valid message, he knows furthermore that the key is one of the q points on the 

line c different from d. Choosing one of these points at random he can cheat 

with probability 1/ q. Because all potential keys are distributed with equal prob­

ability and are independent of each other, the attacker has no additional informa­
tion: each one of the q points on c different from d might be the key. 

Thus, in this case an attacker can also only cheat with probability 1/ q. 0 

Definition. A net is a rank 2 geometry consisting of points and lines such that 

through any two points there is at most one line and through each point outside a 
line g there is exactly one line not intersecting g. 

For a fmite net (that is a net with a finite number of points) one can prove that on 
each line there is a constant number q of points and through each point there is 
the same number r of lines. The numbers r and q are related by r:5; q + 1. 
Furthermore, we can define a parallelism in a net by saying that two lines g and 

h are parallel if and only if g = h or g n h = 0. In this case we write gllh. It 

easily follows from the axioms of a net that 11 is an equivalence relation; its 
equivalence classes are called parallel classes. Thus, a parallel class of a net is a 
set of lines such that each point of the net is on exactly one of these lines (cf. exer­
cises 4,5, and 6). 

Examples of nets are obtained by considering only r:5; q + 1 of the parallel 

classes of an affine plane of order q. But these are by far not all the nets (see 

[BJL85]). 

Starting with a net N one can construct a perfect authentication system A = 

A(N) in a similar way to that above: 

- the plaintexts are the parallel classes of N, 
- the keys are the points of N, 
- the messages are the lines of N. The message corresponding to a plaintext d 

and a key k is the line of the parallel class k through d (see exercise 7). 
Conversely one can prove [DVW89] that every perfect authentication system 

can be obtained in this way from a net: 
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6.3.4 Theorem. Every perfect authentication system is of the form A(N) for some 

net N. 

Proof Let A be a perfect authentication system. We define a geometry N as 
follows: 

- the points of N are the keys of A; 
- the lines of N are the messages of A; 
- a line c and a point k are incident if and only if the message c is valid under 

the key k, this means if and only if there is a d that is mapped under k onto c. 

In order to prove that the geometry N is a net, we read the axioms of a net in 
terms of the underlying authentication system. The first property of a net is that 

through any two points there is at most one line. So we have to show that there is 

at most one message valid under two distinct keys. This condition follows from 
Lemma 6.3.2( c). 

Let (k, c) be a nonincident point-line pair. In other words, c is a message not 

valid under k. We have to show that there is exactly one message c' valid under 

k with the property that there is no common key for c and c'. 
Let d be the plaintext belonging to c. By Lemma 6.3.2( c) the messages that 

do not share a key with c are exactly the messages corresponding to d. Let d be 

mapped under k onto a message c'; then c' is the unique line through k that has 
no point in common with c. 

Therefore N is a net. o 

As corollary it follows ([GMS74], [BeR090D that in a perfect authentication sys­
tem A with K keys there are at most ~ + 1 plaintexts. Equality holds if and 
only if A is constructed from a projective plane. To sum up, perfect authentica­

tion systems are geometric, and the best ones are constructed from projective 

planes! 

A corresponding theory was developed for authentication systems, in which the 
attacker may observe more than one message before inserting a message of his 

own (see [Fak79], [Mas86D. 
We consider the situation of the receiver verifying n messages with the same 

key. The attacker may send his message whenever he wants to, for instance before 
the first message or instead of the nth message. As in the above theorem one can 

show that the theoretical probability of success only depends on the number of 
keys. If K denotes the number of keys, then the probability p that one of n 
messages was falsified is 

p;:':K-1/(n+l). 
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For the proof see [Fiik79], [Wal9D] and [Ros93]. Authentication systems for 
which equality holds are called perfect n-fold. 

In this scenario one has to exclude that the same message is sent twice. Other­
wise, if the attacker has observed a message he can himself repeat the message 
later on, and the forgery would not be detected. 

Examples for n-fold authentication systems can be constructed using geome­
try. For this we need the normal rational curves considered in Section 2.2. 

6.3.5 Theorem. Let P be afinite projective space of dimension n + 1, let H be 

a hyperplane, and let P be a point outside H. Furthermore, let g, be a normal 

rational curve of H. An authentication system A is defined as follows: 
the plaintexts are the points in g" 

- the keys are the hyperplane not through P, 

- the messages are the points not equal to P. For d E g) and a key k one gets 

the corresponding message as intersection of the line Pd with the hyperplane k. 
Then A is a perfect n-fold authentication system. 

Proof Let q denote the order of P. First, we compute the numbers of plaintexts 
and keys. By definition, a normal rational curve has exactly q + I points and thus 

I g, I = q + 1 plaintexts. The number of keys is the number of hyperplanes not 
through P. Altogether there are qn + I + ... + q + 1 hyperplanes, of which 
qn + ... + q + 1 pass through P. Therefore, there are exactly qn + 1 keys in A. 

In order to prove that A is perfect n-fold we have to show that the probability 
of an attacker being able to forge one of the n messages equals 1/ q. 

We first analyse the case in which no message has been sent. For this we con­
sider an arbitrary plaintext, that is a point Q of the normal rational curve. Each 

point X on the line PQ different from P is a possible message corresponding to 
Q. We show that through each point X on the line PQ there is the same number 
qn of keys: By exercise 10, there are exactly qn hyperplanes through X that do 
not contain P, so there are exactly qn keys through X. Thus, the probability p 

that X is a valid message equals the number of keys through X divided by the 
number of all keys. In other words, 

qn I 
p=--=-. 

qn+! q 

Now we consider the case that already i messages PI,"" Pi (1 ~ i ~ n) have 
been sent. We have to face the possibility that the attacker knows these points. 
Therefore he knows that the actual key is one of the hyperplanes through Plo ... , 
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Pi not through P. Let OJ be the plaintext belonging to Pj (1 5,j 5, i). The points 
OJ are the intersections of the lines PPj with the hyperplane H. 
We claim: the subs pace U = (P b ... , P j) has dimension i-I, and for each point 

Q of 9) difforent from the points OJ, the line PQ does not intersect U. 
Since the points OJ lie on 9), we have that dim(Q1,' .. , Qi) = i-I. From this 

it follows that 

dim(P, Pt. ... , Pi) = dim(P, Qb ... , Qi) = i, 

thus dim(P1, ... ,Pi)=i-l. 
If Q is another point on 9), then dim(Q, Qb ... , Qi) = i. Therefore, the line 

PQ only intersects the subspace (P, Q). ... , Qi) in P. In particular, PQ does not 
intersect the subspace Ut;;;; (P, Q], ... , Q;). 

Using this claim we are able to prove that the probability of an attacker being 
able to generate a valid message for a plaintext Q equals 1 Iq: The attacker 
knows that the actual key is one of the hyperplanes containing the already ob­
served messages, i.e. the hyperplanes containing U, but not P. There are precisely 
qn - i + 1 hyperplanes fulfilling this condition. Let R be a point on the line PQ 

different from P. Because PQ does not intersect the subspace U, dim(U, R) = i 

holds. Furthermore, the number of hyperplanes containing this subspace, but not 
P, equals qn + i. Therefore, each message belonging to Q corresponds to exactly 
qn - i keys. Since 

n-i 1 
p=-q--=-

qn-i+1 q' 

the probability p of success is also in this case just 1 Iq. o 

Remark. In Theorem 6.3.5 it is essential to consider only points in general position 
as plaintexts, which means that any n + I points generate H. We examine the 

situation of an attacker having observed two messages PI and P2· Let QI and 
Q2 be the corresponding plaintexts. The attacker does not know the actual key, 

but he knows that this must be one of the hyperplanes through P I and P2· 

If another point Q* of the line Q I Qz were a possible plaintext, the attacker 
could choose the point p* := PQ* n PIPz as his message and could thus insert a 

new message without being detected. 
This means that although the attacker does not know the key he can generate a 

valid message! 
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6.4 Secret sharing schemes 

Cryptographic algorithms are often based on secret information. This is true for 
symmetric enciphering and authentication algorithms as well as for asymmetric 
algorithms. 

Therefore, the management of secret data is a fundamental task in applications 
of cryptology. One distinguishes different aspects: generation, distribution, stor­

age, and deletion of secret data. All these are different aspects of key manage­
ment. 

In this section we deal with the special problem of storing secret data. More 
precisely, we deal with the dilemma between the secrecy and availability of data. 

This problem is solved in an optimal way by secret sharing schemes ([Sha79], 
[Sim92b]). 

What is a secret sharing scheme? 

Technically speaking, secret sharing schemes are used to reconstruct secret data, 

when only certain parts of the secret data are available - the reconstruction is only 
possible for some previously defined situations, while it is impossible for all other 
situations. 

To clarify matters we start with an example, which will serve as prototype for 
all secret sharing schemes dealt with in this section. 

Example. We assume that the secret X is a string of m bits, e.g. a binary key of 

length m. We want to 'subdivide' X into 'partial secrets' ('shares') Xi such that 
X can be reconstructed from any two shares, while it should not be feasible to 
reconstruct the secret from only one share. 

To construct such a secret sharing scheme (a 'threshold 2-scheme') we use a 
projective plane P = G(2, q) of order q ~ 2m. We choose a line g. The secret is 

encoded as a point X on g. We randomly choose a line h * g through X and on 
it arbitrary points XI> X2, ... as shares (see Figure 6.7). 

Figure 6.7 A threshold 2-scheme 
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To reconstruct the secret X from two shares Xi> X), i * j, the system computes 
the intersection of the line XiX) with g. If Xi and X) are two valid shares then 
the system obtains the point X. On the other hand, knowing only one share one 
cannot reconstruct the secret: Given a share Xi> any of the q + I points of the 
line g could be the secret. If an attacker only knows the line g and the point X;, 
any point * Xi on any line through Xi could be another share. Therefore, each 
point on g might be the secret equally likely, the probability of success for the 

attacker equals 1 /(q + 1). 
This means, if an attacker knows only one share there is no better strategy than 

just guessing the secret! 

We now give a precise definition of secret sharing schemes. For this we describe 

the fourphase life cycle of a secret sharing scheme. 

1. The definition phase. In this phase the service provider formulates his re­

quirements. He firstly has to define the 'access structure', that is to say which con­

stellations of users shall be able to reconstruct the secret. Secondly, he must limit 
the probability that an illegal group of users can reconstruct the secret. Observe 
that no system is secure to 100%. An attacker could, for instance, guess the secret. 
But interestingly enough, in geometric secret sharing schemes the probability of 

success for an attacker can be kept as small as one likes. 
The access structure is the set of all configurations of users allowed to recon­

struct the secret. In other words: the access structure specifies the sets of partici­
pants that may legally reconstruct the secret. The access structure might be rather 

complex (see below): one sometimes distinguishes between different groups of 
users and defines how many members of each group are needed for reconstructing 
the secret. The probability of deception is the second parameter that the service 

provider must specify. For this he specifies an upper bound for the probability that 
a illegal set of participants can reconstruct the secret. This is necessary because 
there is no 100% security; any system can be defrauded with some positive prob­

ability. The user specifies how far he will tolerate an illegal reconstruction of the 

secret in choosing a probability p for this event. (A typical value is p = 10-2°.) 

2. The mathematical phase. After having formulated the requirements it is the 

task of mathematicians to provide structures to realize them. 
For constructing secret sharing schemes (projective) geometry with the under­

lying algebra has proven to be of great value. We have already described an ex­
ample, subsequently we will present further constructions based on geometry for 
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different secret sharing schemes. For detailed description of the realizability of 
secret sharing schemes using geometric structures see [Ker92], [Sti95]. 

3. Generation of the secret. Now it is the task of the service provider to choose 
the secret X. Then the shares are calculated by a method provided by mathemat­
ics. Finally the shares are distributed to the users. 

It is crucial that the choice of the secret X - and thus of the shares - is com­

pletely under the responsibility of the service provider. It is independent of the 

formulated requirements and the chosen mathematical structure. 

4. The application phase. In this phase the secret X will be reconstructed from 
a legal constellation of shares. 

Remark. We distinguish two different application types of secret sharing schemes. 

If the application is of type 'access" the reconstructed value is compared to the 
stored secret X. If the two values coincide access is provided. Thus, in this case 
the verifying instance (e.g. a computer) knows the secret. 

There are also applications whose aim is to generate secrets. One example is 

the transport of a cryptographic key to a computer, where it is reconstructed. In 
this case the secret is not stored in the computer, but must be transported to the 
computer. Here we have a different problem: the computer must convince itself 
that the calculated value is not only an arbitrary value, but with high probability 

the correct secret X. For this purpose the so-called robust secret sharing schemes 
have been invented. A simple example of a robust scheme can be derived from our 
example. The computer requests not just two, but three shares and verifies 
whether all three pairs of points lie on the same line. (For details see [Sim90].) 

Depending on the different types of legally constellating the participants, different 
types of secret sharing scheme can be distinguished. We first define the most im­
portant classes of secret sharing schemes and then describe their constructions. 

(a) Threshold schemes. In a threshold I-scheme it is required that any t users 
can reconstruct the secret, but no constellation of t - 1 or fewer users. For in­

stance, in a threshold 2-scheme any two users can reconstruct the secret, but a 
single user has no chance to do this. In a threshold I-scheme, the number t is also 

called the quorum. 
(b) Compartment schemes. The participants are partitioned into different 
'compartments', which, in principle, have equal rights: In each compartment a 
certain quorum of users is required to let this compartment take part in the re­
construction of the secret. Moreover, a certain number of compartments must 
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participate in the reconstruction. In other words. each compartment is a threshold 
scheme, and on the set of all compartments we have yet another threshold scheme. 

This could be used for signing contracts in a company. There are two com­
partments, e.g. technical and commercial departments, and at least one signature is 

required from each compartment. 
(c) Multilevel schemes. Again, the participants are partitioned into different 
groups, but these groups are ordered hierarchically. Each member of 'higher' or­

der can replace a member of 'lower' order. 
A special case is a multilevel secret sharing (2. s )-scheme that realizes the 

following access structure: 
There are two groups if, and ::r of participants. The secret shall only be recon­

structable in the following cases: 
any s participants of if, can reconstruct the secret, 

- any 2 participants of ::r can reconstruct the secret, 
- any s - 1 participants of if, together with any participant of ::r can reconstruct 

the secret. 
In such a secret sharing scheme two participants of the top level ::r have the 

same rights as s participants of the lower level; moreover, any user of the higher 

level can act as a member of the lower level. 

Constructing secret sharing schemes 

In the following we will present geometric constructions for the three most im­
portant classes of secret sharing schemes, namely threshold schemes, compart­

ment schemes, and multilevel schemes. 

1. Threshold schemes. To construct a threshold t-scheme one can proceed as 
follows: We fix a line g in P = PG(t, q). The points of g are the potential se­
crets. If the service provider chooses a point X on g as actual secret, there is a 

method which enables him to 
- choose a hyperplane H (that is a (t - 1 )-dimensional subspace) through X 

that does not contain g, and 
- choose in H a set ::r of points in general position containing X. For example, 
one can choose ::r as part of a normal rational curve in H. The shares are points 

of ::r different from X. 
In the application phase certain partial secrets are sent to the system. The sys­

tem computes the subspace through these shares (points) and intersects it with g. 
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If at least t legal shares are sent to the system, the constructed subspace is H, 
because the points are in general position. In this case the correct secret H (\ g = 

X will be obtained. This means that any t participants can reconstruct the secret. 

The converse is valid as well: 

6.4.1 Theorem. If an attacker knows at most t - 1 legal shares, his chance of 
cheating successfully is only l/(q + 1). 

Proof An attacker deceives successfully if he obtains the correct secret without 
knowing t shares. It is clear that an attacker has an apriori probability of success 
of 1/ (q + 1), since he may choose one of the q + 1 points of g at random. 

The theorem claims that his chance does not increase if he knows as many as 
t - 1 legal shares. 

Let ::r' be a set of at most t - 1 shares. Then ::r generates a subspace U with 
dim{U) .$ t - 1. Moreover, U does not intersect g, since :r u {X} is a set of in­
dependent points. An attacker knowing only g and ::r' only knows that any fur­
ther share is a point outside U not on g. 

We show that each point Xo on g has the same probability of being the se­
cret: for any choice of Xo on g, the subspace W = <Xo, U) contains the same 
number of shares. Since g has exactly q + 1 points, the attacker's probability of 
success is l/(q + 1). 0 

Definition. A secret sharing scheme is called perfect if the probability of guess­
ing the secret has the same value for all nonlegal constellations of participants. 

This means, perfect secret sharing schemes have the property that an attacker 
knowing only a small number of shares (not enough shares) has the same infor­
mation about the secret as he would have with no share at all. In other words: per­
fect secret sharing schemes provide an insuperable security against insider attacks: 
an insider knowing at least one share only has the same extremely small probabil­

ity of success as an outsider knowing nothing about the shares. 

2. Compartment schemes. We restrict ourselves to the most important special 
case of compartment schemes: There are several user groups, namely the com­
partments Gb G2, ... , Gn. The requirements for the access structure are as fol­
lows: 
- in each compartment two participants are required to let it take part in the re­
construction of the secret; 
- the participation of two compartments is sufficient to reconstruct the secret. 
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A corresponding secret sharing scheme can be geometrically constructed in the 
following way (see Figure 6.8). We fix a line g in P = PG(n + 2, q). The service 
provider selects a point X E g as the secret. First, he randomly chooses a line h 
* g through X and n points Xl> X2, ... , Xn * X on h. Then he chooses 
through each point Xi a line gj (i = 1, 2, ... , n) such that the set {(h, gi)' i = 1, 
2, ... , n} u {(h, g)} of lines is independent (this means that it is a set of inde­

pendent points of P /h). These lines gi correspond to the compartments Gi· 
Eventually each participant of compartment G i is given a point Xi of gi differ-

ent from Xi' 

h----~~--~--~--~ 

Figure 6.8 A compartment scheme 

6.4.2 Theorem. The compartment scheme described above is a perfect secret 

sharing scheme. 

Proof We consider the reconstruction of the secret. The procedure is simple. One 
calculates the subspace U generated by all given points and intersects it with g. 

If the constellation of participants is legal, the obtained point is the secret. If at 

least two points on lines gk and gh are given (k * h), the points Xk and Xh are 
contained in U. Thus, h lies in U and so does X E U n g. Moreover, g ~ U 
because by assumption the planes (h, g) and (h, gi) are independent. 

Now we consider a nonlegal constellation of participants and show that each 

point of g can be reconstructed with the same probability. 
The best situation for an attacker is to know two shares PI> P j ' of one com­

partment G j and one share Pj ofthe other compartments Gj (j = 2, ... , m). Let 

X' be an arbitrary point of g. It is sufficient to show that 

is a subspace of dimension m + 1 intersecting g exactly in X'. 
Since the lines g, g 1> g2, . .. are independent, the subspace (U', h) has di­

mension m + 2, if X' is not equal to X. So for X' * X we have that dim(U', X') 
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= m + 1. Thus it remains to show that if X * X' the point X is not contained in 
U'. 

If m = 1, U j ' = (PI, PI', X') is a plane. If X' and X were contained in Ul', it 
would contain the two skew lines g and gb a contradiction. 

If m = 2 we proceed as follows: 

dim(U2') = dim«P}, Pt', P2, X'» = dim«Ul', P2» S; dim(Ul') + 1 = 3. 

On the other hand, dim(U2') 2 dim(U I') = 2. Assume that U2' is a plane. Then 
(U2', h) would be a 3-dimensional space containing the independent planes (h, 
g), (h, gl), (h, g2), a contradiction. 

One can prove similarly the cases m 2 3 (see exercise 12). o 

3. Multilevel schemes. In multilevel schemes, the participants are divided into 
hierarchically ordered groups. Here, we only deal with two level schemes, the most 
important multilevel schemes in practice. More precisely, in a multilevel (2, s)­

scheme, the participants are partitioned into two disjoint groups 3" and ~ such 
that the secret can only be reconstructed by the following constellations of partici­
pants: 

any set of at least two participants of :r, 
- any set of at least s participants of ~, 

any participant from :r together with at least s - 1 participants from ~. 

We define the following system. We fix a line g in P = PG(s, q), whose 
points are the potential secrets. After selection of a secret X, the service provider 
chooses a line h * g through X and a hyperplane H through h that only inter­
sects g in X. The shares corresponding to the participants of :r are points on h 
different from X. We denote the set of these points by :rh' The shares belonging 
to the participants of ~ are points of a set ~H of H with the following proper­

ties: 
- ~H u {X} is a set of points of H in general position. (For instance, one can 
choose SH U {X} as a subset of a normal rational curve of H.) 

- Any subspace through s - 1 points of ~H contains no point of :rh' 

As an example we consider the case s = 3. The secret sharing scheme is con­
structed using a 3-dimensional projective space P = PG(3, q). We choose a line 
h * g through the point X of g, a plane 1t containing h, but not g, and a nor­
mal rational curve :JC of 1t (a conic in this case) through X with tangent h. We 
must choose the sets 3"h ~ h and ~1t ~ J{ such that each line through two points 
of ~1t intersects the line h in a point outside ~fh (see Figure 6.9). 
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Figure 6.9 A multilevel (2, 3)-scheme 

6.4.3 Theorem. The construction above yields a perfect multi/eve! (2, s)-scheme. 

As proof we refer to exercise 13. 

Remark. In [BeWe93] it is shown how to choose the points of :Th and ~1t III an 
optimal way. 

To end this section we summarize the essential advantages of secret sharing 

schemes constructed using geometry. 
- In contrast to most of today's cryptographic mechanisms secret sharing 
schemes offer provable security on each arbitrary level! For each security level p 

there are systems for which the chance of cheating is at most p. 

- Secret sharing schemes can be implemented easily. Because the typical decep­

tion probability demanded today is in the range between 2-20 and 2-100 there 
are no arithmetical problems, at least compared to the requirements for RSA (with 

512 to 1024 bits) or similar algorithms (compare [BePi82], [Beu92]). 
- Secret sharing schemes offer an extremely comfortable participant manage­

ment. One can add users without changing anything in the computers used in the 

application phase. The removal of participants is more complicated, though. One 
could do this organizationally by using a blacklist. The best solution would be to 

withdraw all shares, and to choose a new line h and new shares. But this radical 

solution cannot be used too often in practice because it is very costly. 

Exercises 

1 Prove the theorem of Singer, 6.2.2, in spaces of arbitrary order q. 
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2 Prove that the following claim holds in Theorem 6.2.3: the incidence vector 
has one gap of length d + 1 and 2i gaps of length d - 1 - i (i = 0, 1, ... , 
d-2). 

3 Construct GF(8) by explicitly listing the elements and the addition and mul­
tiplication tables. 

4 Let N be a net with line set G. If one defines the relation lion G by 

5 

g 11 h <=> g = h or g and h have no point in common 

show that one obtains an equivalence relation with the property that there is 

exactly one line of each equivalence class ('parallel class') through each point 
of N. 

Let N be a finite net. 

(a) Show that through each point there is the same number r oflines. 
(b) If r > 2, show that each line contains the same number of points. 
(c) Is there a net with r = 2 in which not all lines have the same number of 

points? 

6 Let N be a finite net with q points on each line and r lines through each 
point. Show that r ~ q + 1 with equality if and only if N is an affine plane. 

7 Show that from each finite net a perfect authentication system can be con­
structed by the method described in section 6.3. 

8 In the following way, one obtains an authentication system: 

Fix a plane 1to in P = PG(3, q). In 1to we choose a set G* of lines, no three 
of which pass through a common point. 

The plaintexts are the lines of G*, 
- the keys are the points outside 1to, 
- the message belonging to the key k and data d is the plane (k, d). 

Show that the deception probability is 1/ q if no, one or two messages are 

known to an attacker. 

9 Generalize the previous exercise to PG(d, q). 

10 Let P = PG(d, q) be a projective space, and let U be a subspace of dimen­

sion i of P. Show that: 
(a) There are exactly qd- i-I + ... + q + 1 hyperplanes containing U. 
(b) Let P be a point outside U. Then there are exactly qd - i-I hyper­

planes containing U not passing through P. 
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11 (a) Show that one obtains a perfect threshold I-scheme in the following way 

(cf. [Sha79]). We consider the affme plane over a field F. As secret we 
choose a point (0, ao) of the y-axis. Then we choose a polynomial f of de­
gree t - 1 with absolute term ao. All other coefficients are chosen at random. 
The shares are points of the form (x, f(x». 
[Hint: The system is based on the fact that a polynomial of degree t - 1 can 

easily be reconstructed from any t of its values, for instance by Lagrange 

interpolation.] 
Cb) Is the system constructed in (a) perfect? 

12 Show 6.4.2 for the case m = 3. 

13 Prove 6.4.3. 

14 Generalize the construction 6.4.2 to the situation that I groups are needed for 
the reconstruction, and in each group G j a commitment of tj users is re­

quired. 

Project 

In this project we study an interesting authentication system. The system is not 
perfect, but still provably secure. Compared to a perfect authentication system, it 
has a large number of possible plaintexts, making it interesting for practical appli­
cations. It is also interesting from a geometrical point of view because important 

structures, namely spreads, play a central role. 
Let P = PG(3, q) with q = 3 mod 4. A spread of P is a set ff) of lines with 

the property that each point of P is on exactly one line of ff). It can easily be 
proven that (a) each spread of P has q2 + 1 lines and (b) each set of q2 + 1 

mutually skew lines form a spread. 
There are lots of spreads. The set ff) of lines of the form ga,b and gao form a 

spread ff): 

gh,k = <Cb, a, 1,0), (-a, b, 0, 1», 

gao = {(1, 0, 0, 0), (0,1,0,0». 

a, bE GF(q), 

This spread has a special property, it contains a regulus. The set :R 

{gaol u {ga,o I a E GF(q)} oflines of ff) is a regulus. 

1 Show that a set of skew lines in PG(3, q) is a spread if and only if it has 

q2 + 1 lines. 

2 Show that the set above defined as 

You should know the following notions 

ff) = { ga,b I a, b E GF(q)} u {gaol 

is a spread in PG(3, q). 

3 Show that the set 

:R= {gaol u {&. 0 I a E GF(q)} 

is a regulus in PG(3, q). 
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Now we can construct the authentication system A. Let ff) be a spread of P 
containing a regulus !:Il As plaintexts of A we choose all lines of ff)\g{, the keys 
are the points on the lines of !R; the message belonging to a plaintext d and a key 
k is the plane generated by the line d and the point k. 

Convince yourself of the following hypotheses: 

4 The authentication system A has q2 - q plaintexts and q2 + 1 keys. 

5 If an attacker inserts a message of his own devising at latest after the first 
authentic message has been sent, his probability of success is at most 
2/(q + 1). 

(For details see [BeR091].) 

You should know the following notions 

Algorithm, key, enciphering, one-time pad, authenticity, data integrity, data 

authenticity, authentication, authentication system, perfect authentication system, 
secret sharing scheme, threshold scheme, group scheme, hierarchical scheme, per­
fect secret sharing scheme, spread. 
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